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11 Physical distinctions for decision processes 
In this chapter and the next we continue our analysis using specific numerical models to understand 

the new distinctions that arise in the decision process theory. Some of these distinctions are physical, 

which we deal with in this chapter. Some of the distinctions are more social, which we deal with in the 

next chapter.  

The physical distinctions can be attributes that are directly reflected in the differential geometry. An 

underlying assumption of decision process theory is that it applies to processes which have a degree of 

continuity similar to other physical processes so that tools of topology and geometry are applicable. There 

are several distinct mechanisms that mutually interact in this theory so the theory is expected to provide 

insights that are new and distinct from the several diverse starting assumptions. These rely on distinctions 

that are common to a wide variety of phenomena that we characterize as physical. We start with a 

particular attribute of such models which is their structural stability. 

11.1 Morphogenesis and structural stability 

We assume processes are connected both in space and in time: strategic choices made by one group 

impact choices another group makes. We have pointed out that the resultant equations, which are 

hyperbolic partial differential equations, exhibit a mathematical stability that small changes in the initial 

conditions result in small changes in the solutions (Wald, 1984). We also expect that such solutions are 

characterized by a structural stability or locality property that the structural character of a solution does 

not change dramatically as long as we stay in the near vicinity of that solution.  

The expectations of structural stability are local not global attributes of nature or of decision process 

theory. In nature we have phenomena on a lake or an ocean that on a calm day, exhibit no wave motion. 

The components of the lake are connected. As soon as there is a small breeze, we see small ripples on the 

water. This is an example of the expected structural stability. As the breeze picks up however, the ripples 

turn into waves that at some point exhibit breakers, which are new structures. This morphogenesis 

follows from rather general arguments and can be expected whenever we have a theory based on topology 

and geometry of the type we have been considering (Thom, 1975). We expect such morphogenesis to 

occur in nature as well as in any sufficiently realistic theory and will follow from the differential 

equations. We expect the phenomena of ripples to result from the fluid equations of the theory of fluid 

dynamics. Indeed, such equations are used to predict the structural anomalies of hurricanes and tornadoes 

in meteorology (Friedman, 1989). In like fashion we expect to see structural changes in decision process 

theory. In this section we inquire into such morphogenesis and investigate their possible mechanisms. 

The possibility of structural instability in decision processes was raised in the classic work that 

investigated the limits of global growth (Meadows, Meadows, Randers, & Behrens, 1972). However it is 

not often the focal point of economic theories. For example game theory is concerned with the 

equilibrium state and so implicitly concerned only with the small ripples that might occur nearby. It is not 

ordinarily concerned with the possible breakers that occur when the wind picks up. We are concerned 

with such phenomena for a couple of reasons. First, such phenomena could provide confirmation or 

condemnation for the theory. Second, such phenomena may be of practical interest to either identify or 

potentially avoid. Like hurricanes, such phenomena may be destructive so knowing when they are 

imminent is useful information.   

To make these arguments more quantitative, in our numerical solutions in earlier chapters, we 

constructed examples of structural change. So for example in section 5.10, we demonstrated that if the 

stakes in the prisoner’s game were sufficiently high, we obtained a dramatic change in the behavior of the 

decision process value, Figure 5-36. In section 6.8.4, for the Robinson Crusoe model, we found a similar 
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result if we introduced a large strain, Figure 6-21 and Figure 6-22. Again with quasi-stationary solutions 

in the section 9.5 for the attack-defense model, we saw more examples when the harmonic behavior 

associated with acceleration effects was large.  

Decision process theory admits solutions that are perturbations of game theory equilibrium behavior. 

We have seen this in (Thomas G. H., 2006) and in our numerical examples in this book. In particular, for 

the player fixed frame models, with a little algebra using the definitions and Eq. (9.12), as well as exercise 

17 from section 8.12, we wrote the frame equations Eq. (3.32) as Eq. (8.78). From these equations, we 

glean that for behavior at the still point, we have zero active geometry acceleration: the still point 

behavior is then set by : 

  (11.1) 

This represents the simple structure analogous to ripples on a lake. Specifically, when there are no tidal 

forces (free fall) and no charges, the flows are constant and the spatial components of the frame rotate 

with components 1
2 e q

fυυχ−
′− , the characteristic payoff. The characteristic payoff acts identical to the 

Coriolis force and reflects a rotating central co-moving frame (Cf. the form of the metric, Exercise 45, 

Chapter 4). Moreover we see that the absolute force is also zero. In the special case that the characteristic 

payoff is zero, the composite payoff is just the weighted average of the player payoffs and corresponds to 

the figures in (Thomas G. H., 2006). 

The assumption of no tidal forces can be imposed at any point by choice of gauge: it reflects 

characteristic payoff acceleration or Coriolis forces. Ordinarily this will not be true at all points as viewed 

in the same reference frame. For example it might not be true along an initial streamline, even though 

along that streamline we can take the metric to be Minkowski and make simple model choices for the 

orientation potentials, so that they are small or correspond to a static gravity field. Indeed, these choices 

describe the basic assumptions or models used in (Thomas G. H., 2006). They provide a baseline structure 

on which we can look for new behaviors (Cf. Figure 9-26).  

For example, we ignored the fact that the inactive scalar fields and the payoff fields may vary along 

the streamline (Cf. Exercise 52, Chapter 4). More generally, we look at the free fall harmonic behavior as 

only providing a guide and any non-zero harmonic behavior as a steady-state wave pattern. This 

corresponds to the lake being flat with ripples: the interesting question is what happens when the 

amplitude of the ripples becomes large. Some ripples are a direct consequence of the free fall behavior 

and others are a consequence of additional acceleration effects. A complete description is to use the full 

set of equations with the appropriate boundary conditions. 

A behavior when the ripples become strong is shown in the section 9.5, exercise 11, Figure 9-24 from 

an earlier chapter. The behaviors cease to be characterized by the same structure only modified by larger 

amplitudes, but are morphogenic. The study of morphogenic behaviors brings in other attributes of the 

theory that themselves may represent simple concepts but are now interacting together in a complex way. 

We see in a dramatic way that mechanisms in decision process theory are connected. Such mechanisms 

bring in new distinctions. What are these connections that change structure and do we have evidence to 

support the existence of these connections? 

In subsequent sections, we inquire into the decision process theory’s mechanisms that change 

structure. In particular, we identify a set of new standalone features predicted by decision process theory 

that we believe are worthy of further investigation. 
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11.2 Causality 

In section 7.3 we argued that decision processes are causal not stochastic, despite the fact that 

decisions involve uncertainty. We argued strongly against the Bayesian approach (Bayes, 1764) and for 

an approach looking at possible decision choices as a frequency distribution that evolves in time in a 

causal manner. We illustrate these arguments with a common problem in software development: 

delivering a complex project on time. We fabricate a scenario below, though from experience, a scenario 

that we believe does in fact happen. 

The delivery of a complex project, one that involves perhaps 500 developers, reflects a large number 

of decision processes. It is attractive to management to think of such processes as occurring stochastically 

and to believe that the delivery of a complex project will follow the same pattern of previous projects of 

the same scale and complexity. We imagine that a company X has gone through 4 or 5 delivery cycles, 

each taking 2 years and each having been delivered on time. The projection of the next delivery is thus 

expected by management to take the same time, 2 years. But a variation occurs; after development has 

started, the customer asks for new functionality, essentially increasing the size of the project. Let’s say 

both the customer and company X agree that the increase size is 20% and that the company agrees to hire 

100 more people and the customer is willing to pay for the increased cost. Management predicts that the 

original schedule will thus be maintained. 

The people are hired but to the dismay of the customer and management, the project ends up costing 

significantly more than the 100 people and does not come in on time, even though the additional staff 

were hired with sufficient time, based on past data, to get the job done. Both sides looked at the problem 

from the same worldview, that of a complex stochastic process. Neither side anticipated failure. 

How would we look at this process and would the expected results be predicted to be different? A 

causal approach (ours or other similar causal approaches) would look for key dynamic mechanisms that 

govern the delivery of the software product. We would agree that hiring the additional people is a 

necessary ingredient. However we would find on analysis and by interviewing members of the technical 

staff that not all employees are equally productive. The previous releases were staffed by essentially the 

same people with only a small turnover. The skill level of that staff was constant: new hires that were 

needed as replacements were always added to the project only after adequate training. To satisfy the new 

customer request however, staff were added after the overall project was well underway. The additional 

100 people were new employees that were not yet trained and so had a much lower skill level. Though 

many of the employees and lower level managers complained that they would not be able to deliver based 

on the addition of untrained staff, their voices were overruled since the management model had no way to 

use the skill level to modify their schedule prediction. They interpreted the employee complaints as 

normal grousing about being asked to go for a stretch goal.  

The consequence of the lower skill level was in fact not felt immediately. The lower skill level 

introduced a higher level of defects into the product, but these were not detected early on. When the 

product was moved along to the testing phase, the higher number of defects was detected (per unit of 

code). The defect insertion rate could have been predicted based on existing data on new hires from past 

releases. The company of course was now in the testing phase and had no choice but to hire even more 

additional staff to find and fix the defects. They were also not able to roll off existing staff as planned to 

other releases. They hired an additional unplanned 50 people, though in fact that was enough only to fix 

the first round of defects. They spent 6 months additional because of this testing. Of course the additional 

people hired were again unfamiliar with the product and many of their fixes also broke. The failure rate of 

their fixes was about the same as the other new hires. The consequence of this problem was the fix-break 

time cycle. 

Under normal circumstances a release was expected to pass all but 5% of its tests by the time it 

entered the final test cycle. The test cycle of 6 months was part of the expected 2 year delivery. That final 

cycle would reduce the number of defects by another 95%, an acceptable escaped defect rate. The 

reduction of defects was in fact a direct measure of the skill level and training of the employees. The new 
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circumstance dropped that defect reduction percentage dramatically. They saw only a 50% reduction in 

defect rate. 

For a 50% reduction, as they went into the final cycle, 50% of the tests would not pass. If they did a 

second cycle, they would have 25% that would not pass; a third cycle and 12% and a fourth cycle would 

be 6%. To get to where they should have been in past releases they would need a fifth cycle, which is four 

extra cycles. Each extra cycle cost them 6 months and 50 people. This extended the project by two years 

and added an unplanned 50 extra people on the staff, as well as keeping on the project staff that had been 

expected to shift to other releases. The total project cost should have been 500 people for 2 years: 1000 

staff years. The budget office showed that the overall project cost was 2000 staff years. 

Now the example above is fictitious but illustrates how even a very simple exercise of adding a single 

causal mechanism (staff expertise) has a profound impact on the outcome. Time loops can be very 

expensive in time and money. They are also relatively invisible to the participants of the decision process. 

The decision about what features to deliver to the customer followed standard form, albeit late in time. 

The decision about when the project was complete did not change. From a stochastic view the late project 

and the normal projects are similar. Indeed, it is easy to make the assumption that all behaviors are 

stochastic. The alternative approach of modeling the behavior as a causal processes seems harder as it 

requires identifying the dynamic mechanisms.  

Despite being complicated however, it has been observed that such dynamic mechanisms are often 

well understood by organizations (Cf. section 7.8). In this example, employees and managers knew that a 

lower skill level would lead to a higher defect rate. In a stochastic model, there was no place to put that 

information. The real difficulty is that the global consequence of such mechanisms is not easily deduced 

without a causal framework. Within a causal framework (e.g. the attack-defense model section 9.1 

modified by exercise 1 at the end of this chapter) we obtain global structures that we think would be hard 

to anticipate or visualize, Figure 11-1 and Figure 11-2. 

 

Figure 11-1: Attack-defense active flow 

contours  

 

Figure 11-2: Attack-defense active flow 

contours  

A focus on dynamic mechanisms leads us to look not just at decisions as events but to look at the 

stresses and strains that impact decision making and the timing for these events. We look at effects that 

may slow down or speed up decision processes. In the above case, the skill level of new hires slowed the 

decision process. An outcome of our inquiry into decision processes using decision process theory is the 

identification of many such mechanisms. 

11.3 Aggression and limits to greed and accommodation 

Decision processes are engaged in by players that may engage more or less strongly as a function of 

the dynamics. If one player engages more strongly than all the others as indicated by frequency of making 

( )0,0, ,aV z τ ( )1,1, ,aV z τ
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decisions we say that player is acting aggressively. The extreme opposite, zero engagement, is that the 

player is acting passively. To act at all requires an act of will and so must require some aggressive or 

accommodating behavior. 

 

Figure 11-3: Attack-defense model 

engagement (charge) values ; 

“attack” (red), “defense” (blue) and code 

of conduct (green)  

 

Figure 11-4: Attack-defense model 

engagement (charge) contours 

 where “defense” is aggressor 

In the attack-defense model with a small acceleration frequency (section 9.1 modified by section 11.9 

exercise 1), we see that such aggressive behavior is tied to a greedy (negative) engagement or charge, 

Figure 11-3. The other player is tied to an accommodating (positive) charge. We demonstrated similar 

behavior for the prisoner’s dilemma, section 5.8.3. The new feature with three active strategies is that we 

see a limit both to the amount of greed and the amount of accommodation, Figure 11-4.The same effect is 

seen in the co-moving frame, Figure 11-5 and Figure 11-6. 

 

Figure 11-5: Attack-defense co-moving 

frame charge contours  

where “attack” is aggressor 

 

Figure 11-6: Attack-defense co-moving 

frame charge contours  where 

“defense” is aggressor 

In many ways the result reflects common sense. Not everyone can be the aggressor and not everyone 

can be the accommodator. The world does not naturally separate into groups of people who will always 

be accommodating to those that are greedy. Because we live in a social network, there are limits to how 

greedy or how accommodating we will be as a society. That is reflected in decision process theory. In 

part, the origin of the limitation is the possibility of harmonic solutions with a growth limited to be linear 

in proper time. More generally we think such limitations must be present in a theory that completely 

represents all aspects of the process. 
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For our specific models here, the limitation can be seen in the elasticity of the decision process 

system. In an elastic system, stressing the components by displacing them (generating strain) produces a 

bounce of the system as a response; the system changes other parts in a continuous manner in such a way 

as to balance out the applied force. We have applied an input force as a consequence of setting the 

boundary conditions and now observe the consequences to the system in these figures. The elasticity 

provides a limitation to greedy behavior or accommodating behavior by either party. 

The limits to greed or accommodation can perhaps not be proved but can be taken as an operating 

neutrality principle. There are limits to the amount of polarization. In decision process theory, strong 

engagement is either greed or accommodation depending on the numerical sign of the engagement. 

Another aspect of the limits of greed (accommodation) is the existence of a neutral point of zero 

engagement that attracts other behaviors. The physical analogy is that in general, matter that occurs in 

nature is electrically neutral. Though it is possible for matter to be strongly polarized, that is not its 

“natural” state. On the other hand, even though matter is neutral, we can’t ignore the effects of 

polarization. We see these effects as radiation, magnetization, electrical permittivity etc. We don’t 

confuse limits on polarization and ground state neutrality as a statement of the dynamic condition. The 

existence of a neutral point is the source of the elastic dynamic behaviors.   

We have demonstrated the virtues of locked behavior (section 9.2), which supports this neutrality 

principle. We have solutions that have zero acceleration and player engagements at one point. At this 

point the solution concentrates the energy density supporting the notion that the preferred place to be is at 

this neutral point. So for example if each player has a positive (negative) player bias, the generalization of 

game value, then when that player is more aggressive, then the engagement is negative (positive). 

For locked behavior we see the engagement grows with the size of aggression. We remember 

however that we are looking at stationary flow so we are not arguing that the aggression grows 

dynamically. We are also not saying that aggression tends to zero to the neutral point. What we do say is 

that there is a correlation of aggression with engagement. A consequence of this correlation is that the 

energy density is clumped, at least for these locked solutions (Cf. Figure 11-14). As part of the stationary 

flow, we have a range of values of aggression and engagement.   

11.4 Network connectivity 

Decision processes occur in a societal context, so that decisions are connected to each other not only 

across time but across strategic distance. The limit of greed (section 11.3) is an example. We have 

normally envisioned the societal context as that of multiple groups doing similar things at about the same 

time. In this way the network is similar to a fluid in physics. However, there is a significant difference 

between human behaviors and those of inanimate objects: humans remember. Thus the same individual 

may see similar situations a variety of times and respond not just on present circumstances but on those 

events that have happened in the past. In this way the individual sees a network based on his or her 

experience as well as on a network based on the observations of what others are doing currently. We 

allow both meanings of network in what follows. Both contribute to the societal or network connectivity. 

The significance of network connectivity (Barabási, 2003) is that such connectivity plays a key role 

in behavior. Moreover it is deterministic not random. The internet provides a prime example of the 

importance of network connectivity. The network distinctions give rise to morphogenic changes such as 

phase transitions. There are many examples of network connectivity. These network distinctions are new 

as they don’t arise in game theory. Network connectivity gives rise to morphogenic changes. Diverse 

local behaviors can combine to form new and unexpected global structures such as Figure 11-5 and 

Figure 11-6. We have computed other examples of this in section 5.10 where high stake and low velocity 

behaviors generated trapped behaviors, Figure 5-36. 

As a practical example, when Japanese practices dominated manufacturing because of adoption of 

Deming’s management method (Walton, 1986), manufacturing in the United States was not unaffected. 

Indeed those practices returned to the United States and caused an effective revolution in quality for US 

made products. Adopting techniques currently being used by someone else is a network connection. We 
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are not waiting for another decision to be made by ourselves; we are mimicking what someone else is 

doing because they are in a similar space at a neighboring point in time. These are gradient effects over 

the network, which propagate causally. An analogy is the pressure gradients in weather. The flow of air 

reflects the causal nature of the weather. We effectively describe the weather however by considering not 

the flow of air but rather the areas of high pressure and low pressure. The pressure gradients (as seen over 

distance) from high pressure to low pressure generate the forces, which help us understand the causal 

motion of the air. These gradients reflect the elastic network connectivity of the atmosphere. 

In a similar fashion we look for pressure gradients in decision processes. They measure the network 

connectivity forces. We look for evidence of network compression of strategic areas. Areas that compress 

should be under higher pressure than those that don’t. The ability of a strategic area to resist compression, 

its bounce, is a measure of the elasticity of the decision process in that area. Decision processes reflect a 

complex scenario of network interactions. The measure of network connectivity will be based on the 

change between players executing a particular strategy and other players executing a neighboring 

strategy. 

Again as a practical example, when a company comes out with a revolutionary and successful 

product, we might well believe that it is the result of causal activities that happen solely within that 

company. That product might reflect new technologies or new uses of existing technologies developed by 

that company. The product is revolutionary in that it is not a mirror of any existing product. Once released 

however, we often see many companies simultaneously imitating that product. This is reflective of the 

network connectivity rather than a causal train of events in each of these companies based on their own 

innovation and design. 

Our use of the distinction of pressure gradient fits in with our general framework of units, section 

1.6. We distinguish strategies as the effort that goes into making a choice and utility or value of that 

choice. Utility and effort are not equivalent in decision process theory, analogous to stress and strain, 

respectively, in physics; each generates the other through dynamic mechanisms. We have identified three 

mechanisms that change utilities (sections 7.5, 7.6 and 7.7): pair-wise competition, pair-wise cooperation 

and narrative (context, story or opportunity). Each are associated with forces that change behaviors and 

create high density and low density behaviors: capital accumulation and capital loss. Network 

connectivity is a mechanism for change that is a consequence of these capital fluctuations. Accumulated 

capital must be spent and lost capital must be replenished. 

Capital, including experience, therefore represents stress that is either constructive or destructive.  

For example, constraining the public’s liberties generates stress, which we normally consider destructive. 

A company’s creative ability generates wealth is a stress, which we normally consider constructive. Stress 

causes things to happen. Capital must be created or spent. Deprivation of freedoms can stimulate 

revolutions. Failures can stimulate growth. Creativity creates new opportunities. If there are stresses we 

should ask what efforts will now be undertaken and what strains will now occur. The loop must be closed. 

Stresses cause strain just as strains generate stresses. This leads us to the following hypothesis about a 

structure that might be stable.   

Successful decision structures are built on three key attributes: effort, utility and capital. They 

correspond to the definition of success as the three W’s: work, wisdom and wealth (Wikipedia; Henry 

Wriston, 2012). We characterize successful decision structures as those that are sustained and stationary, 

as those in which each player’s efforts realize their vision (value or utility) and those in which the 

network flows result in locked behaviors with capital accumulation corresponding to the collective 

visions.  

11.5 Still point and free fall 

We believe that decision processes behave in a way analogous to electrical engineering systems in 

which there is characteristic impedance and a load impedance on which one imposes a forced behavior 

from a source: the characteristic payoff reflects the network attributes of the system; the harmonic 

steady-state waves (next section) reflect the source; and the load is determined by the initial conditions. 
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To fully understand the system we need to look at the static or characteristic behaviors as well as the 

dynamic behaviors. 

Thus, just because we look for dynamic mechanisms, we don’t ignore static behaviors and the 

consequences that are implied. An important static behavior to incorporate we believe is based on the 

game theory analysis of decisions. It provides a framework for the space in which we operate, the space 

of pure strategies extended to include mixed strategies as frequencies (sections 7.4 and 7.5). The theory 

will have solutions in which behavior along a path will have a still point (section 8.7), which will appear 

as one that has no active geometry acceleration forces: these are the sum of the absolute force, 

competitive or game theory force and the cooperative force. Game theory identifies such behavior as Nash 

equilibrium. Though there are differences in how each theory computes the composite behavior in terms 

of individual player behavior, both theories provide essentially the same distinction. We can use the 

insights learned from game theory while remaining consistent with the ideas of causality, without 

resorting to Bayesian probability as a predictor for future behavior, which is also consistent with at least 

one view of game theory (Von Neumann & Morgenstern, 1944). 

However there is an important distinction between our approach and game theory. Game theory 

assumes greater freedom in how different specifications of strategies for a given decision problem lead to 

identical results. Decision process theory says that the theory can be expressed in a covariant way that is 

independent of the strategy specifications, but the numerical values may in fact depend on that 

specification and non-identical results. For any given specification one must take into account 

acceleration effects. The acceleration effects may manifest themselves as flows that change in time or as 

Coriolis effects in which the flows appear fixed but fictitious forces appear that reflect the fact that the 

description is in a frame that is rotating.  

Thus we argue that at the still point there is no acceleration and away from that point there may be 

acceleration. We take this as the covariant specification. The numerical results and the mechanisms 

depend on the frame of reference. In some frames (such as the central holonomic frame, section 3.6), the 

active strategy flows are independent of time (indeed, in the central holonomic frame for the fixed frame 

model, the space components are zero and the time component is unity) while by assumption, the 

covariant rate of change of the flow with time is not constant.  

 

Figure 11-7: New York Stock Exchange (New York Times, 2011) 

This is consistent with the common perception that such effects appear to be absent. We selected 

differential geometry as the basis for our theory because it addresses this issue. Decision process theory is 

built on the principle that at each point, the strategy space is locally flat: locally, one can find a coordinate 

system in which we appear to be at rest and there appears to be no acceleration. We distinguish this case 
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by saying that in that specific coordinate system, we are in free fall at that point. However, this is only 

true to first order in the coordinates. The acceleration effects we are discussing are frame rotation effects 

and are of second order. The space is in fact curved, not flat, just as the earth appears locally flat but is a 

globe; the effects are second order. In decisions, we see a connectivity that is not only local but global so 

that we need differential geometry to stitch together the local pictures into a consistent global picture. We 

need to add the concept of orientation flux fields. As a consequence, our central holonomic frame, which 

provides a global view, in general is not locally flat, exercise 51 from chapter 4; in general, we are not in 

free fall in that frame, though we could arrange the initial conditions so that that would be true at that one 

point.  

There are two types of behaviors that characterize a still point: those that are in free fall and those that 

are not. The latter can be resolved into harmonic steady-state wave behaviors (forced behaviors), with 

arbitrary frequencies, as a way to decompose all possible non-free fall behaviors. We say more about the 

latter in the next section. As a dynamic mechanism, free fall provides a harmonic structure with specific 

rotational frequencies set by the characteristic payoff. Examples of this behavior have not been well 

studied. A challenge is to verify that the harmonic frequencies match the appropriate free fall values. As a 

start, consider a typical process reflected in the stock market behavior, Figure 11-7.  

We are quite used to seeing fluctuations. If they are interpreted as random or stochastic, we are 

denying the possibility that the behavior might be causal. If we argue that the behavior is causal, then an 

alternate interpretation is that we are seeing multiple harmonics. The stock market might be overly 

complicated to start with, but the fact that it appears to have harmonics is encouraging. The market 

responds as if it was an elastic-object that has been struck. Specific events do appear to cause the market 

to oscillate and reverberate long after the event. A detailed study is needed to determine whether we can 

identify the free fall harmonics and separate them from the general steady-state wave harmonics we 

expect. The important new distinction is that we look not just at equilibrium behaviors but that we look at 

the harmonics that result after some impact event, such as in our model calculations for the attack-defense 

model Figure 9-27 and Figure 9-28. 

Our model is quite different in several respects from the stock market. We have modeled a single type 

of market, whereas the stock market reflects many markets and many products. We imagine that the stock 

market reflects processes that go beyond our simple attack-defense example. In the real world, a market is 

not isolated but carries on in a larger environment. One way to model that environment is to ignore its 

effects as reflecting longer time scale phenomena. That is, we replace the real strategic variables by ones 

in which the environment effects are absent. For the stock market we would look at specific stocks and 

over limited periods of time. Only then might we see the free fall behaviors we are interested in. We 

would proceed somewhat like scientists investigating weather patterns by ignoring the spin of the earth 

(Coriolis forces) as a first approximation. At some point however we would return to the problem and add 

back such effects. That is our approach in considering free fall harmonics as separate from the more 

general steady-state wave harmonics considered in the next section.  

The game theory distinctions, though not new, are worth repeating as they are not exactly the same as 

the decision process theory distinctions. In game theory, decisions are characterized by pure strategy 

choices or mixtures of pure strategy choices reflecting some frequency distribution. In contrast, the still 

point and free fall behavior is determined by the way in which one sets the initial conditions. Those 

conditions could be to require certain equilibrium values or could be to require certain initial player 

values (chapter 8). What we can say is that for free fall, there will be a mixed strategy choice that sets the 

rate at which each strategy changes. There will also be a characteristic payoff matrix that will determine 

the harmonic frequencies. Additional dynamic mechanisms from the theory determine the detailed 

relationship of these free fall values and initial boundary condition values for the players. 

We distinguish between the player’s worldview of payoffs that they use to make their decisions and 

the composite worldview that reflects the decisions that actually have been made. In free fall when there 

are no forces other than this composite worldview, the strategy choices reflect rotations. Indeed we argue 

more generally that the concept of payoffs, individually or composite, reflect some type of rotation. We 

name the free fall rotation decision vorticity. It represents the rotation due to the characteristic payoff, and 
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in a fixed frame is the weighted average of the player payoffs. Such a characteristic payoff can be 

represented by its eigenfrequencies based on the general properties of rotations. 

Qualitatively, this generalizes Nash equilibrium. If players act on the basis of their individual payoffs, 

then Nash argues that there will be an equilibrium choice that is in some sense best in that no player can 

do better because of what other players would do in response. The Nash equilibrium is thus an optimal 

strategy for the characteristic payoff. Conversely, if we know the Nash equilibrium we imagine a variety 

of rotations that leave this direction unchanged, any one of which is a possible characteristic payoff. We 

say that the collective behavior will always be a rotation, so there will always be a characteristic payoff 

that measures that rotation. For any rotation, there will always be directions that are left fixed. Decision 

choices along such a direction correspond to Nash equilibriums. 

11.6 Harmonic steady-state wave 

In section 7.7, we suggested that one source of utility consists of opportunity: namely choices that we 

are not doing. Thus in addition to free fall, we may have sources of energy that have nothing to do with 

the market that we are in. Technically we look at this possibility as introducing an external jolt to the 

system.  

Consider the following. At each point in space, the flows (and more generally the frames) can be 

represented as a superposition of harmonics. We can decompose the strategic flow at the still point in 

terms of free fall harmonics in which the frequencies are fixed in terms of the payoffs, and more general 

harmonic steady-state waves in which the frequencies are arbitrary. For example, to the attack-defense 

model we add a harmonic steady-state wave to the model reflected in Figure 9-27 and Figure 9-28. We 

obtain Figure 11-8 and Figure 11-9, where the added frequency is about a third that of free fall, exercise 

1. Recall that we define the still point behavior as that which occurs when there is no active acceleration 

, Eq. (8.78): collectively the absolute forces, competitive forces and cooperative forces cancel. 

A typical system behavior is a stable behavior until an external event jolts it. The jolt can be 

represented by a characteristic superposition of harmonic steady-state waves. We provided an example of 

this in our software project example (section 11.2). The jolt in this case was the addition of new software 

requirements. Another example of a jolt might be the meltdown of the market due to toxic securities. 

Although it may be convenient to know the free fall behavior of the system, realistic systems are usually 

more complicated because they have been jolted. We must include the ability to jolt the system or set up 

steady-state waves in the system to reflect realistic behaviors. Harmonic steady-state waves provide the 

dynamic mechanism for studying such behavior. 

As the software project example illustrates, a jolt to the system may not generate the result expected 

by the players at the time. We must include other dynamic mechanisms to correctly compute the outcome. 

In our theory, we in fact do take into account these other dynamic mechanisms. We assign a particular 

harmonic behavior along an initial streamline and use the theory to compute the behaviors along all other 

streamlines. In this way we consider the network connectivity effects; in the case of the software project, 

such other effects were the learning curve of new hires. This corresponds to a streamline that was not 

associated with free fall behavior. 

The advantage of looking at active geometry tidal effects as harmonic steady-state waves is that we 

can categorize effects depending on their time scale. If we consider effects that have a very long time 

scale compared to the considered decision process (the characteristic payoff), then we have a harmonic 

frequency that is small compared to the characteristic payoff 
26

. Such low frequency waves might be 

things to ignore or might be significant hints of things to come. On the ocean, such low frequency rollers 

can indicate oncoming severe storms. We would need to know the amplitude of the effect as well as the 

frequency. Similarly, low frequency effects in the market might be long lead time effects; if they reflected 

boom-bust cycles they could represent stormy financial times. 

                                                      
26

 Actually, we compare to one of the typical free fall eigenfrequencies. For the case of three active strategies, there 

would be a single imaginary frequency, Eq. (8.80).  

0Qυ =
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Figure 11-8: Attack-defense input 

harmonic flows ; attack (red), 

defense (blue), code of conduct (green) 

and time (purple) with  

 

Figure 11-9: Attack-defense coordinate 

contours 
 
with  

Low frequency phenomena might be something we ignore. Do we have good evidence that that 

represents a good decision policy? Global warming is an example of something that has a long cycle time. 

Those that argue that global warming is significant still agree the effects are a long way off. They also 

agree the effects are currently small but growing. The issues that are in dispute are whether the amplitude 

will continue to grow and whether that growth is caused by humans. Whether significant growth is caused 

by humans or not, an observed large amplitude indicates changes in policy that will be needed to avoid 

serious consequences to the global economy; so one criterion for low frequency phenomena to be 

important is that their amplitude is large. In comparing different phenomena we can compare the product 

of the amplitude and the frequency. As the frequency goes down the amplitude must go up to make an 

equivalent effect. 

The global warming example relies in part on an effect that continues to grow. There are effects 

however that are entirely cyclical and long term. An example is cyclical or seasonal market demands. At 

the end of the year, sales go up dramatically because of holiday buying. This skews the monthly market 

figures for members of the retail industry. It obviously changes their business strategies because the 

demand (amplitude) during the holiday is large. Such cyclical changes are important even though they 

don’t generate exponential growth.  

Short term fluctuations would correspond to high frequency harmonic steady-state waves. In the 

market place, these also might be seasonal effects or fads. It is clear that a robust dynamic picture requires 

inclusion of such effects. Such effects might dominate or mask other behaviors. The effects are typically 

not small. If such effects become sufficiently large, they may generate large morphogenic changes. We 

found evidence for such effects for the prisoner’s dilemma (Cf. Figure 5-48). We can find similar effects 

for the attack-defense model, Figure 11-10 and Figure 11-11. To make the effects more visible, we 

increase the size of the strategy space by using the model parameters exercise 1 with player payoffs and 

related compression parameters reduced by . We then see attenuated frame waves, which also generate 

gravity waves in the normal form coordinate basis. 
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Figure 11-10: Attack-defense flows at 

 versus  in the central holonomic 

frame with  and player payoffs 

reduced by  

 

Figure 11-11: Attack-defense coordinate 

contours  in the central 

holonomic frame with   

The operative measure for short term fluctuations can again be taken to be the product of the 

frequency and the amplitude. Now however the frequency is large so even a small amplitude fluctuation 

can make an effect. For example consider the impact of advertising. If ads are run, often they can change 

attitudes and market, even when short. It is the frequency of the ads that makes an impact. This fact is 

observable during presidential elections. The ads need not address the issues so in that sense their 

frequency is much larger than what we have called the free fall frequency or characteristic payoff. It will 

be a consequence of other dynamic mechanisms to determine how these effects propagate. Advertising in 

fact changes the narrative; it provides orientation flux field effects according to the dynamic law of 

opportunity (section 7.7). 

In general, we expect to see a variety of effects: free fall, short term fluctuations and long term 

fluctuations. Returning to the stock market behavior example (Figure 11-7), we might imagine that the 

short term fluctuations reflect response to daily news events and information about individual stocks. The 

long term fluctuations might reflect trends in foreign markets. On top of this the general market behavior 

would reflect growth or decline based on the success of the market: the free fall behavior. 

We suggest that the addition of forced oscillations does not change the definition of still point, only 

the frame of reference. We can view a harmonic steady-state waves change of reference as the addition of 

fictional forces to free fall behavior; the. For our attack-defense example the forced oscillations might 

represent cyclical behaviors outside of the context of the time frame of the attack-defense scenario. 

Nevertheless, such forces may not be needed if the strategies are expressed in some other frame of 

reference, just as Coriolis forces disappear in a frame of reference that looks at the earth’s rotation from 

outside. 

In our theory of an elastic system, forced oscillations drive the system and reflect a behavior with 

modified oscillations that characterize the underlying system behaviors. This has been exploited and is the 

basis for the analysis in Systems Dynamics (Meadows, Meadows, Randers, & Behrens, 1972). We note a 

more familiar example of bowing the strings of a violin. The sound that results is more than the 

oscillations of the strings. The sound reflects the character of the violin itself, so that one gets a sound 

from a Stradivarius that is more extraordinary than from an average violin. Thus starting from an input set 

of harmonic flows Figure 11-8, we obtain the resonant response Figure 11-9. We see that the response is 

much richer than the input. 

We also look for empirical periodic behaviors. We know that there are numerous cycles in business. 

There are bust and boom cycles that have historical time frames measured in decades (Wikipedia, 2012) 

down to corporate project release cycles measured in weeks or months. In considering free fall behaviors, 

we should consider such behaviors as key characteristics of the decision process. Certainly one aspect of 

these different cycles is their length. The length is inversely proportional to the frequency and the 
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frequency is proportional to the payoff. Assuming the same proportionality constant, high payoffs would 

correlate with short cycle time cycle lengths. Low payoffs would correlate with long time cycle lengths. 

We would be forced to consider their relative cycle lengths a dynamic feature of decision behaviors and 

correlate this with their payoffs along with the appropriate proportionality constants. 

11.7 Acceleration  

The outcome of the decision process consists of the actual choices made. The rates at which these 

choices are made represent the decision flow and are something that we directly measure. For example, 

we would look at survey questions as providing the current state of each player and what effort they 

would apply at that point in time. The survey is not predictive in the probability sense but provides 

information about the initial state; decision process theory then governs the evolution of that state. In this 

way we generalize the static flow considerations of Game theory to stationary flow and dynamic flow. In 

either case, the new distinction will be acceleration; we expect the flow of decisions to change in 

direction, in magnitude or both. These changes provide a direct means to measure the new distinctions in 

decision process theory. 

 

 

Figure 11-12: Attack-defense locked 

behavior for acceleration gradient 

 

 

Figure 11-13: Attack-defense locked 

behavior for acceleration gradient 

 

  

For example, we expect stationary flow to exhibit harmonic steady-state wave motion. The 

acceleration consists of decisions that are constantly changing their direction, even if their values are 

constant along their streamlines. We expect more complex harmonic steady-state waves in which the 

decision values also change. Acceleration is a new and important distinction. 

We have freedom in choosing a frame of reference in which to observe the acceleration. Certain 

frames will make it easier to observe some features as opposed to others. We choose a co-moving frame, 

one in which the flows are at rest, but where the acceleration is not necessarily zero. The harmonic 

motion is captured by the characteristic payoff and is not visible in the acceleration. However, other 

acceleration effects due to the interplay of forces in decision processes (e.g.  the locked behavior, section 

9.2) are more visible, Figure 11-12 and Figure 11-13. As decisions are made, we expect that choices in 

some strategic areas will be denser than in other areas. This generates pressure Figure 11-14 and 

compression Figure 11-15 that would push future choices away from those areas. The behavior of those 

choices would appear to accelerate from the high pressure areas to the low pressure areas. Such effects 

generate changes in momentum, a term often used in sports and in the stock market. We are familiar with 

team behavior improving suddenly as if they pick up outside support. We see their fortunes accelerate. 
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Figure 11-14: Attack-defense locked 

behavior for pressure at  

 

Figure 11-15: Attack-defense locked 

behavior for compression gradient at 

 

The opposite of acceleration is inertia.  Being slow to change ones decision strategies reflects large 

inertial effects. In fact there might be confusion over behavior that has settled into equilibrium versus 

behavior that is not changing because of inertia. We think of companies that are not making a profit but 

are set in their ways. There may in fact be winning strategies that they could adopt if it were not for the 

inertia and lethargy of the organization. 

11.8 Outcomes 

In this chapter we identify new distinctions generated by decision process theory: 

1. Morphogenic: Structures that we identify that are local and small may change into more 

complex structures as the fields increase in strength and interact with each other. 

2. Causality: Decision processes are causal not stochastic. 

3. Aggression and limits to greed: Decision processes are engaged in by players that may engage 

more or less strongly as a function of the dynamics. If one player engages more strongly than 

all the others as indicated by frequency of making decisions we say that player is acting 

aggressively. In model calculations, we see that aggressive behavior is tied to a greedy value 

(negative) for the engagement or charge. The other player (in a two person game) exhibits an 

accommodating (positive) value. We find that there are limits to both greedy and 

accommodating behaviors. 

4. Network connectivity: Decision processes occur in a societal context, so that decisions are 

connected to each other not only across time but across strategic distance. This gives rise to a 

variety of distinctions associated with gradient effects: pressure, network compression, bounce 

and elasticity. In this concept we find support for the three W’s: work, wisdom and wealth. We 

use these as the basis for successful decision structures. 

5. Still point and Free fall: Decision process theory will have solutions in which behavior along a 

path will have a still point (section 8.7) at which the active geometry acceleration is zero. This 

generalizes the notion of Nash equilibrium from game theory and allows us to use game theory 

as a baseline for composite decision behavior. A special case of still point behavior is one in 

which the strategies appear to be in a flat space; the acceleration is determined entirely by the 

rate of change of the strategy flow. This free fall behavior gives rise to harmonic behaviors 

with frequencies set by the composite payoff. Such frequencies are properties of the specific 

decision process.  

6. Harmonic steady-state wave: Harmonic steady-state waves can be used to drive the system 

and help illuminate the free fall harmonics. A general solution can have an arbitrary 

superposition of harmonic steady-state waves. The relative weights of the superposition are 

fixed by the initial conditions. A system can be studied by driving it with forced steady-state 

wave harmonics, which will illuminate the underlying free fall harmonics. 
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7. Acceleration: We expect to see acceleration in decision processes; we expect the flow of 

decisions to change in direction or in magnitude. These changes may provide the most direct 

means to measure the new distinctions in decision process theory. 

The student should be able to identify these distinctions in real world decision processes and qualitatively 

see how such distinctions would apply in the theory. The attainment of the outcomes of this chapter is 

facilitated by doing the exercises in the following section. 

11.9 Exercises 

1. Modify the attack-defense model (section 9.1 and section 9.5, exercise 7) to one in which we add 

to the free fall harmonic, an acceleration behavior harmonic with frequency . The payoffs 

remain the same as section 9.1: 

  (11.2) 

2. For the attack-defense model used in this chapter, we think of the co-moving frame transverse 

active variable  as a measure of aggression. As we dial up the value of  we expect that the 

flow  will increase, Figure 11-16. We accomplish this by fixing the initial value of . 

What should we expect for the gradients of the other flows ? Does it seem 

reasonable that if Blue were acting aggressively, he might start defending his more expensive 

target? Correspondingly might Red start attacking the less expensive target? What would 

reasonable values be for the gradients? See Figure 11-17. 

 

Figure 11-16: Spatial behavior of the 

flow with initial aggression gradient 

 

 

Figure 11-17: Aggression gradient 

flows at  

3. Using exercise 2 we have computed the contour flows. Can you see how the aggression 

assumption plays out? Start with the proper time, Figure 11-18, where you should be able to see 

the effect of the initial gradient contribution that “widens” the shape of the figure. In Figure 

11-19, you can see two different time harmonics; one is going up and down according to the flow 

along the aggression strategy and the other reflecting the free fall behavior.  
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Figure 11-18: Proper time for model 

with aggression 

 

Figure 11-19: Contour plot for flows 

with aggression assumption 

 

4. In exercise 1, we provided a harmonic steady-state wave with frequency , which is roughly 

a third the frequency of the free fall for a version of the attack-defense model. Consider the 

results below for a harmonic steady-state wave with frequency , which is roughly three 

times the frequency of the free fall version. Explain why the initial coordinate preferences for red 

and blue have reversed, Figure 11-20. Explain the structure for the coordinate contours, Figure 

11-21. Why has blue now started to defend the more expensive target and red now attacking the 

less expensive one? Is this a prediction or an initial condition?  

 

Figure 11-20: Attack-defense initial 

coordinate free fall plus harmonic 

steady-state wave with  

 

Figure 11-21: Coordinate contours for 

attack-defense free fall with harmonic 

steady-state wave  

5. We consider the same model as in exercise 1 and provide the corresponding initial flows (Figure 

11-22) and flow contours (Figure 11-23). Since the free fall flows are constants, we see only the 

harmonic steady-state wave in the first figure. Do we see evidence of the free fall flow in the 

second figure? Consider the proper time Figure 11-24. Can you characterize where the surfaces 

meet as morphogenic change? 
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Figure 11-22: Attack-defense initial 

flows for free fall plus harmonic 

steady-state wave with  

 

Figure 11-23: Flow contours for 

attack-defense free fall with harmonic 

steady-state wave  

  

6. We consider the same model as in exercise 1 and provide the flow contours for , Figure 

11-25. Can you characterize the shape as morphogenic change? 

 

Figure 11-24: Attack-defense proper 

time for free fall plus harmonic steady-

state wave with  

 

Figure 11-25: Flow contours for 

attack-defense free fall with harmonic 

steady-state wave  

7. In the player fixed frame model, the player support potential is a diagonal matrix in the space of 

the inactive strategies, or it is a diagonal matrix transformed by a constant rotation. Refer back to 

the field equations Table 4-5 for  and construct an argument for why this assumption might 

be broken if the co-moving frame orientation potentials were functions of proper time. Would it 

be necessary to re-compute the values of the orientation potentials? 

8. So far we have considered locked behavior in which the pressure is a maximum at the still point. 

We now consider a different attack-defense model, one in which the payoffs are not scaled by the 

factor , but are left with their initial values. We make changes to the self-support contributions 
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to insure that the pressure is initially zero. The basic changed values from the free fall model in 

sections 8.7 and 9.2 are given below. We get new behavior for the pressure (Figure 11-26) and 

similar behavior for the acceleration (Figure 11-27) in which the still point is the low pressure 

point . Because the payoff field carries energy, we are forced to consider a smaller lattice 

with sizes  in the  directions, respectively. 

  (11.3) 

 

Figure 11-26: Attack-defense model 

pressure with modest payoffs 

 

Figure 11-27: Attack-defense model 

acceleration with modest payoffs 

9. For the attack-defense model, exercise 8, the lack of dominating player bias fields leads to more 

structure in the player interest for “blue” (Figure 11-28) and “red” (Figure 11-29). Is this structure 

what you would expect? 
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Figure 11-28: Attack-defense model 

player interest for “Blue” 

 

Figure 11-29: Attack-defense model 

player interest for “Red” 

10. For the attack-defense model, exercise 8, there is now more structure in the acceleration gradients 

(Figure 11-30) and in the compression gradients (Figure 11-32). Explain the shape of the pressure 

curve Figure 11-31. Note that the minimum as seen along the  contour is a saddle shape 

reflecting a maximum as seen along the  contour. A similar shape is given for the pressure at 

. Given that the shape along  and  directions, can you see that there are multiple 

pressure ridges along constant  directions. Additional insight can be gleaned from the absolute 

acceleration Figure 11-33. Using the ideas of structural stability from the one-dimensional 

model of the prisoner’s dilemma, section 5.6, we see that a stable curve is not along the  or  

axis, but a curve that accommodates the saddle points. Again similar curves exist for . What 

changes would you anticipate if the payoff for player 2 were to increase or decrease? Carry out 

the calculations to see if your expectations are met.  

 

Figure 11-30: Attack-defense model 

acceleration gradients 

 

Figure 11-31: Attack-defense model 

pressure for  
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Figure 11-32: Attack-defense model 

compression gradients 

 

Figure 11-33: Attack-defense model 

absolute acceleration for  
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