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3 Persistent Behaviors 

In chapters 1-2, we developed a consistent theory of decisions built from lessons learned from game 

theory and the physical world. It is a mathematical and engineering language for a decision process 

theory. Our proposed theory is Eq. (2.31), extended to include time and both active and inactive 

strategies: 

 1
2R g R Tµν µν µνκ− = −  (3.1) 

It is not derived from game theory, physics, biology or chemistry. It is an hypothesis as well as a 

framework that must be tested by observations. The concepts created in the last two chapters have 

consequences that are not simply applications of known physical theories, though we may use 

mathematics and known physical theories to gain insight on how to better our understanding. We are 

applying the scientific principles to a new physical domain, which may well generate new insights in this 

domain as well as to existing domains.  

The rest of the book is devoted to exploring the consequences of this theory. In the process, we 

extend previous work (Thomas G. H., 2006). In this chapter, we illuminate persistent behavior that is 

distinctive to decision processes, which leads to the notion of players or agents. For the mathematically 

oriented reader, we note that persistent behavior as used here corresponds to isometry transformations that 

leave the value of the metric-fields invariant. Each isometry requires the existence of a vector field with 

special properties. The collection of all isometries forms a mathematical Lie Algebra, which characterizes 

the internal symmetry of the theory. Because of this, a player’s or agent’s persistent behavior defines a 

well-defined and persistent mathematical structure. 

We explore the consequences of the theory by examining it in several frames of reference or bases.   

We look at the theory first in the normal-form coordinate basis. In this basis the persistent behaviors are 

characterized by the property that all metric and orientation potentials are independent of the set of 

internal player dimensions. The consequences of persistency in this basis manifest in the field equations, 

which are examined in this chapter in a specific gauge, the harmonic gauge. We look at the covariant 

expression of persistency and define isometry. We gain additional insight into the consequences of 

persistency by looking at the behaviors in a co-moving coordinate basis, which in addition gives us a 

potentially simpler numerical approach to the field equations that we follow in later chapters. Our initial 

focus will be on an orthonormal co-moving coordinate basis. A focus in later chapters will be on a 

holonomic co-moving coordinate basis; in this chapter we define what we mean by holonomic. Finally 

we introduce the player fixed frame model that provides a class of models that highlights the vorticity 

aspects of the theory and may be solved using known current numerical techniques. We use such 

numerical results in later chapters to illustrate how our decision process theory provides a common 

ground for discussion of economic issues. The model allows us to extend, using an electrical engineering 

analogy, behaviors that are like DC circuits, to behaviors that are like AC circuits. 

3.1 Coordinate and non-coordinate bases and potentials  

In the physical world, we take the ability to measure distances and intervals of time for granted. This 

assumption is fundamental to our approach to the physical sciences. We assume that we can determine a 

physical location and a time for each element of a physical event. Because of that, we can assign a 

distance between physical events. For these and other reasons, we feel confident that we can describe the 

dynamic behaviors of physical processes. We can describe the events as they evolve in time.  

In this book we assert that we have the same ability with decision processes. Though we have not 

done that here, we suggest that this assumption is one that needs to be established empirically; we have 

looked at some data and indeed do observe that it appears to be provisionally true.  
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We adopt the continuity viewpoint from the physical sciences that for each decision event, at each 

moment of time, there is a local region in which each strategic choice has a value that varies only slightly 

from the event in question and that furthermore, the values change only slightly at nearby times. We make 

this mathematically precise by asserting that there always exists a coordinate basis at each point of 

strategic space time: there is a coordinate value (for time and each strategic choice) that has the same 

value not only at that point but on an extended surface that contains that point. A complete set of 

independent surfaces through the point then provides a coordinate basis.  

The coordinate value at a point corresponds to a surface through that point. Coordinates of this type 

are called holonomic [Cf. section 1.7]
14

: the coordinates can each be derived from a potential and the 

gradients along each coordinate direction, the coordinate vectors µ∂ , mutually commute, µ ν ν µ∂ ∂ = ∂ ∂ . 

Such holonomic coordinates implement our belief of how distances are measured between decision 

process events in time. Thus we use coordinates here in the same way electrical engineers use the word 

potential fields.  

Prior to Einstein, our common sense notion was that we could get by with a single and global 

coordinate basis: a universal view from which to view interactions. This common sense notion we can 

think of as Newtonian: it corresponds to a frame of reference in which space time is essentially flat. 

Einstein suggested that this view is too simplistic. Consider a well know object, the sphere. A map maker 

takes a patch of a sphere and maps it onto a sheet of paper, the chart. This mapping creates the 

coordinates (local latitude and longitude) that are locally holonomic. However, as is well known, the 

sphere can’t be mapped onto a single chart; at least one point will be left out. More than one chart is 

needed because of the left out points. Our common sense view must be extended to describe even such 

simple and well-known surfaces. Our use of coordinate bases will be local therefore, not global. Multiple 

charts will in general be needed to describe even rather simple structures and thus we allow for multiple 

charts in decision process theory. 

For coordinates that are locally holonomic, we expect certain mathematical properties. Each constant 

surface that corresponds to a holonomic coordinate has the attributes of a potential field. Potential fields 

generate a unique vector at each point on the surface that is normal to the surface. In general, parallel 

surfaces generate the same vector fields. To gain more insight in potential fields, you may recall 

potentials ϕ  whose gradient 
aϕ∂  determines the properties of the vector field that is normal to the 

surface of constant potential. Surfaces of constant potential are used in engineering and physics. For 

example the potential surfaces within a capacitor of arbitrary shape determine the electric field. The 

gravitational potential in Newtonian mechanics defines surfaces that map the gravitational forces. The 

potentials provide a convenient method to discuss physical effects associated with vector fields. The 

vector fields are typically those that more directly determine dynamics, not the potentials. Moreover, not 

every vector field that determines physical behaviors can be written as the gradient of a potential.  

Although locally holonomic coordinate bases provide an intuitive meaning for measurements, there 

are also advantages of looking at global coordinate systems that are not holonomic. They may better 

illuminate curvature effects. As a simple example, recall that we live on a rotating sphere whose 

holonomic coordinate system would be fixed. However, a rotating coordinate system has advantages 

because it corresponds to the world we actually see. In many ways the rotation of the earth is hidden from 

us. We must then capture the effects of our hidden rotation as two separate effects: Coriolis effect and 

centripetal acceleration.  

Similarly, we suggest that the concept of persistency that underlies the existence of players and 

agents is described on the one hand by the locally holonomic hidden dimensions of section 1.9 and on the 

                                                      
14

 The idea in physics is that simple systems are integrable. More complex systems are ones with constraints, but if 

the constraint equations are each integrable, the remaining variables also be integrable. For decisions we envision 

that the active and inactive variables are those that remain after all the constraints have been imposed.  The 

assumption is that the remaining variables will be integrable and correspond to variables that are exact as defined in 

the following paragraphs. 
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other hand is described by a fixed non-holonomic frame. We illuminate some of these persistent attributes 

in the normal-form coordinate basis, which we introduced in section 1.9. Using the frame independent 

principle of least action, which provides decision process theory Eq. (3.1), dynamics can be described by 

the ways in which these persistent attributes interact. 

To include frames that don’t form a holonomic coordinate basis, we refine our mathematical 

distinctions. We start with the basic idea that in a holonomic coordinate basis, each vector field can be 

derived from a potential field. We recall that a vector field U  when thought of as a 1-form, Eq. (1.50) 

discussed in section 1.7, has a potential only if it is exact, 0d =U . In a holonomic frame, this reduces to 

the requirement that U Uν µ µ ν∂ = ∂ , which is the necessary and sufficient condition for there to exist a 

potential ϕ  such that Uµ µϕ= ∂ . A 1-form is exact when we can write it in terms of this potential: 

dϕ=U . 

We write these as covariant requirements. Starting from a holonomic set of frames dxµ
, we construct 

a new set of (potentially non-holonomic) frames E E dxα α µ
µ=  using the gauge transformation E α

µ . An 

exact 1-form 0d =U , will be transformed to coordinates: 

 U Eµ
α α µ αϕ ϕ= ∂ ≡ ∆  (3.2) 

The requirement  ; ;U U U Uµ ν ν µ ν µ µ ν∂ = ∂ ⇔ =  in the old frame, takes the covariant form in the new 

frame: 

 ; ;U Uα β β α=  (3.3) 

Though the components are determined by the potential using a differential operator, these differential 

operators in general don’t commute, α β β α∆ ∆ ≠ ∆ ∆ . 

A second important distinction for holonomic coordinate systems is the commutativity of the 

differential operators. In differential geometry, any vector field X
µ

 can be associated with a differential 

operator X
X µ

µ∆ ≡ ∂ . The commutation between two such operators is defined to be a new covariant 

operator, called the Lie product of the vectors: 

 ( ) [ ] [ ]; ; ,
,X Y Y X

µν µ ν µ
ν ν ν µ∆ ∆ − ∆ ∆ = − ∂ ≡ ∂ = ∆

X Y Y X X Y
X Y  (3.4) 

The covariant requirement that a frame be holonomic is that the 1-forms are all exact and the Lie product 

of any pair of frame vectors is zero. Conversely, for frames that are not holonomic we expect at least one 

of these properties to be absent.  

The advantage of the covariant expressions is that we can investigate specific attributes of a 

holonomic frame that are present or missing in other bases, such as the normal-form coordinate basis. So 

for example using the definition of exactness, Eq. (3.2), with Eq. (1.74), which provides the orientation 

potentials used in the covariant derivatives, the assumption that the transformations are functions only of 

the active strategies leads to the determination that the active coordinates remain exact (as they are not 

transformed) but the (transformed) inactive coordinates need not be exact. Further, it is not difficult to 

show (see exercises 1-3 at the end of the chapter) that the Lie products of the transformed inactive 

strategies are zero and that the Lie products of the transformed active strategies are effectively zero. 

3.2 Normal-form coordinate basis—hidden symmetries 

You might think that the most convenient frame of reference would always be a coordinate or 

holonomic basis. Such bases lead to differential equations that have been well studied and provide 

necessary information about existence and properties of solutions. However, such local bases don’t 

necessarily provide the best global view, especially if there are symmetries. For example, in decision 

process theory, persistency determines the property of the distance measure, Eq. (1.68): 

 ( )( )2 j j a k k b a b

jk a b abds d A dx d A dx g dx dxγ ξ ξ= + + +  (3.5) 
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The symmetry is that the metric elements are independent of the inactive coordinate vectors 
jξ . We say 

that these coordinates are hidden. If the expression is expanded, the most general form of the distance 

measure is recovered without changing this “hidden” property. Writing the measure of distance as Eq. 

(3.5) emphasizes that many equivalent choices of variables that transform only the hidden coordinates 

will lead to the same end result. Distances are made up of two orthogonal contributions: the first an 

inactive or internal contribution and the second an active contribution. All results in decision process 

theory, such as the above measure of distance, are independent of the choice of gauge. In particular, a 

subset of these gauge transformations that leaves the inactive variables hidden must leave all results of the 

theory unchanged. We define these transformations in more detail.  

The distance measure is expressed in terms of locally holonomic coordinates { }j a
x x

µ ξ=  that 

represent the inactive and active strategies respectively (with time treated here as active). These 

coordinates are not in general orthogonal. The inactive coordinates 
jξ  are hidden in the sense that the 

tensors { }j

jk a abA gγ  are independent of these strategies. We can verify that the following gauge 

transformation ,j j j j j j

a a aA Aξ ξ→ − Λ → + ∂ Λ  leaves the inactive strategies hidden. For example, the 

distance Eq. (3.5) does not change under these transformations as long as the inactive and active metric 

elements jk abgγ  don’t change (are gauge invariant). Calculations done in the coordinate basis typically 

involves a significant amount of extra algebra because many of the intermediate results are gauge 

dependent. For example, these intermediate results may depend explicitly on the vector potential 
j

aA  as 

opposed to the gauge independent payoff field 
j

abF , the active metric 
abg  or the inactive metric jkγ . 

Gauge independence for decision process theory follows because the principle of least action is frame 

independent. This covers frames that are locally holonomic or frames that are not. Therefore without 

losing any generality, by picking a non-holonomic frame, it may be possible to reduce significantly the 

algebra necessary to obtain the desired gauge independent results. We illustrate this by looking at our 

theoretical framework in the normal-form coordinate basis using the gauge transformation formalism 

from section 1.7 and Eq. (1.69) in section 1.9: 

 

a a

j j j a

a

dx

d A dxξ

=

= +

U

U
 (3.6) 

This basis, which is suggested by the invariant distance Eq. (3.5) provides a natural gauge invariant and 

orthogonal split into active coordinates, which are holonomic (on the active subspace only, see exercise 3) 

and inactive coordinates that are gauge invariant but not holonomic. 

 We adopt the following conventions. Unless specifically noted, we label the active exact dimensions, 

which are time and the active strategies, by the indices at the beginning of the alphabet { }, , ,a b c� . We 

label the inactive strategies, which are not exact in this basis, by the indices later in the alphabet 

{ }, , ,i j k � . We use the following notations for the determinant of the inactive metric components jk
γ  

and active metric components 
abg  : 

 
det

det

jk

ab
g g

γ γ=

=
 (3.7) 

Noting that these two sets are orthogonal to each other, the determinant of the full metric for the space is 

the product gγ , which can be either positive or negative. We indicate the absolute value of a quantity in 

the usual way, for example γ  is the absolute value or magnitude of the inactive determinant.  

In the normal-form coordinate basis, the payoff matrix is determined by the differential of Eq. (3.6) 

that is manifestly covariant: 
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1

2

; ;

j j j a b

ab

j j j

ab b a a b

d F

F A A

= = ∧

= −

U F U U
 (3.8) 

In the normal-form coordinate basis, this expression is gauge invariant: 

 
j j j

ab a b b aF A A= ∂ − ∂  (3.9) 

The expression Eq. (3.8) is derived from Eq. (2.71).  

We thus have a basis in which the calculations of gauge invariant results are obtained directly, albeit 

in a frame that is non-holonomic. The degree to which the basis is non-holonomic is specified by the 

payoff field. As a notational aside, we make frequent use of raising and lowering the indices using the 

metric, so for example we can write: 

 
ab ac bd k

j jk cdF g g Fγ=  (3.10) 

This highlights that there are no non-zero metric components that mix active and inactive strategies in the 

normal-form coordinate basis. As a further physical aside, we note that the Coriolis effect and centripetal 

acceleration on the earth in which the inactive coordinate is time, respectively would be the “payoff” 

tensor for the Coriolis effect and the gradient of the inactive metric for the centripetal acceleration, 

identified as gravitation. 

3.3 Normal-form coordinate basis—harmonic gauge 

Because the principle of least action remains unchanged under local linear transformations, i.e. gauge 

transformations, the resultant field equations have a corresponding number of degrees of freedom that are 

larger than the physically distinguishable number: many choices of frames solve the same set of 

equations. By going to the normal-form coordinate basis, we have reduced, though not entirely 

eliminated those degrees of freedom. What are physically meaningful are the set of coordinate vectors and 

the gauge-choice that removes all unfixed degrees of freedom. This freedom of choice is not without 

precedent in physics: in electrical engineering for example, there are many choices of potentials Eq. 

(1.21) that lead to the same electric and magnetic fields. In decision process theory, we are also free to 

make such gauge choices, which lead to identical outcomes for decision processes.  

What is unusual about this is that it goes against the common Newtonian notion that there is a unique 

global space and time not subject to arbitrary mathematical gauge choices. The Newtonian view is 

appropriate to flat space not curved space. For this reason, we go against this view and allow gauge 

arbitrariness in the choice of pure strategies and time, which allows for dynamics that reflect a topological 

and geometric structure that will be constrained by its success in matching observational data. The gauge 

freedom is analogous to the freedom of using “charts” for navigation: each chart treats the earth as being 

flat or Euclidean. Because they describe an object that is round, they don’t exactly match up. The 

mapping that matches them is the gauge transformation. The gauge freedom is that at any point, we are 

free but not required to consider the space (our chart) to be flat. Though there is gauge freedom, it is not a 

freedom that can be removed as an attribute of the theory: topological objects with curvature such as the 

sphere require multiple charts. We assert that decision processes generates curvature and require theories 

with this gauge property. 

To solve the local field equations, we can pick any gauge. The solution will be valid in some region 

around our initial conditions. Our choice is the harmonic gauge described in the literature, (Wald, 1984). 

We adapt an argument from that literature to apply harmonic coordinates to the normal-form coordinate 

basis. We start with the field equations Eq. (3.1) for decision process theory that is the consequence of the 

principle of least action. We write these equations in the normal-form coordinate basis. The argument 

assumes we have a set of coordinates, 
ax , which are scalar functions of 

a
y  in another basis in which the 

metric ( )abg y  is known in terms of these coordinates 
a

y .  
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We define the active coordinates a
x  in the normal-form coordinate basis using the following 

differential equation, where the Greek indices { },µ ν  span both the active and inactive dimensions of the 

normal-form coordinates: 

 ; 0ag xµν
µν =  (3.11) 

This differential equation can be written in any frame, so in particular can be written in the normal-form 

coordinate basis with metric 
ab

g . The differential equations can be expanded using Eq. (1.74) and written 

in terms of the determinants Eq. (3.7) and the active partial derivatives: 

 ( )1
0bc a

b cg g x
g

γ
γ

∂ ∂ =  (3.12) 

These differential equations and suitable initial conditions have a unique solution, which provides a 

solution for the normal-form coordinates. In the normal-form coordinate basis, the differential equation 

can also be written in a form that puts constraints on the number of independent metric potentials 
ab

g : 

 ( ) ( )1 1
0 0bc a ba

b c bg g x g g
g g

γ γ
γ γ

∂ ∂ = ⇒ ∂ =  (3.13) 

The coordinates a
x  that satisfy this condition are the harmonic coordinates and Eq. (3.13) is the 

harmonic gauge condition. Without excess degrees of freedom, these conditions, the initial conditions 

and the field equations completely specify the solution to the field equations, which we turn to next. 

3.4 Normal-form coordinate basis—field equations 

In this section we develop the field equations with sufficient information that the interested student 

can verify the results. The important steps needed to obtain the results are specified as exercises at the end 

of this chapter, so only the approach, attributes and interpretation will be given in this section.  

The field equations in the normal-form coordinate basis are obtained directly from the curvature 

tensor, exercise 6, Eq. (3.77), exercise 7, Eq. (3.78) and exercise 8, Eq. (3.79). Because we operate in the 

normal-form coordinate basis, the gauge invariant results, relative to the hidden dimensions, are obtained 

directly. Given the full curvature tensor components, the field equations Eq. (3.1) are obtained by 

contracting the curvature tensor with the metric. The number of equations depends on the space 

dimension n , which is the total number of active and inactive dimensions. The resultant equations are of 

three basic types, depending on whether the indices are all active, all inactive or mixed. Technically the 

field equations are restricted to fields that are functions only of the active variables, so on this subspace 

the active variables a
x  are holonomic and ordinary rules of calculus apply. With the choice of harmonic 

gauge these equations along with suitable boundary conditions have unique solutions.  We now discuss 

the equations that result for these three cases. 

We start with the field equations for the payoff tensor, which result from the full set of field equations 

with mixed indices: 

 ( )1
2

bd ac k a

b jk cd jg g F Tγ κ∂ =  (3.14) 

This is the covariant form in harmonic coordinates, and generalizes Maxwell’s Eq. (1.24). There is one 

such equation for each player or agent in the decision process. There is a source contribution 
a

jT , which 

may have behaviors that are common to all players. There are contributing sources as well from strategy 

and time behaviors of the active and inactive metrics: such behaviors are frame rotation effects that may 

be consequences of the particular observation frame. These effects show up more clearly if we solve the 

equations using vector potentials. In this case the vector potentials and their gauge dependence provide a 

useful way to simplify the equations and interpret the results. 

We use the potential form Eq. (3.8) along with the following gauge conditions for the potentials, 

which are a type of harmonic gauge applied to the inactive space (Thomas G. H., 2006): 
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 0ab j

b ag A∂ =  (3.15) 

Using these gauge choices, we write the generalized Maxwell’s equations for the vector potentials for 

each player: 

 1 1 1 1
2 2 2 2

bd j bd j ec bd j bd jl k j

b d a a b d b ae cd b lk ad ag A g A g g g F g F Tγ γ κ∂ ∂ + ∂ ∂ + ∂ − ∂ = −  (3.16) 

The similarities and differences to the physical equation for electrodynamics can be expanded upon. The 

similarity is that for each agent, we have a wave equation, so we expect signals to propagate independent 

of any matter medium with a common velocity. Each wave equation generalizes the wave equation for 

electromagnetic fields Eq. (1.16).  

The substantial differences are as follows. There are multiple wave equations: there is one equation 

for each player. Each player feels the inertial forces 
j

aT , which are similar for each player for simple 

models, such as the perfect fluid model, Eq. (2.37) and therefore the vector potential solutions for each 

player will be forced to be similar. As a special case, this may generate the Nash equilibrium in game 

theory, which postulates that equilibrium exists when all players subscribe to the same rules. More 

generally, we see how these same rules enforce common behaviors.  

Another set of differences is the existence of “currents” that result not from external sources, but 

purely from frame rotation effects, gradients of the active or inactive metric. We see a contribution 

corresponding to each. There is mixing between players, a phenomenon that is special to this theory of 

decisions. The last term of Eq. (3.16) on the left hand side mixes the roles of the players. In order for this 

to be possible, the scalar fields must not be constant. The scalar fields mix internal and active geometry 

effects. 

The field equations that correspond to the active space depend on the persistent attributes of the 

players: 

 1
2

payoff inactive

ab ab ab ab abR g R T T Tκ κ κ− = − − −  (3.17) 

We see three distinct contributions to the “bar” or active curvature components on the left-hand-side of 

the equation that are computed in the active subspace. In other words, the reduced tensor abR  is given 

directly by Eq. (2.36), which includes partial derivatives through the second order in the active metric. Its 

form will be simplified further by the choice of the harmonic gauge. Though the resultant equations are 

difficult to solve, we can say a few things based on general principles. 

The first contribution on the right-hand-side of Eq. (3.17) is from the matter field source 
abTκ− . As in 

physical theories, for a time isometry (defined in the next section) and very weak couplings κ , the metric 

is well approximated by the Minkowski metric with the exception of the time component of the metric 

00 1g ≅ − Φ . The deviation from unity is a static (time independent) field that is determined by the matter 

density: 

 
2 κρ∇ Φ =  (3.18) 

This is Poisson’s equation and reflects that matter attracts other matter. In the dimensions of 3+1 space-

time, this is an inverse square attraction. In a strategic space with n  dimensions this force law is 

generalized. 

More generally, we can see that if time is an isometry as defined in the next section, there will be two 

effects corresponding to the Coriolis effect and centripetal acceleration. In general relativity the 

“centripetal acceleration” is determined by the time component of the metric and the corresponding 

“Coriolis effect” is gravitomagnetism (Ryder, 2009, p. 180ff) and can be measured with gyroscopes and 

clocks by means of satellites. It is interesting that there is a connection between payoffs, magnetism and 

Coriolis. The source of the connection is the underlying symmetry or hidden variable. To make the 

connection complete for electromagnetism, we use (Kaluza, 1921) and (Klein, 1956) for the Kaluza-Klein 

theory and their proposed hidden fifth dimension. 

It is worth emphasizing that these effects do not arise from a physics analogy but from the 

mathematical structure of the proposed decision process theory and general principles of differential 

geometry. They all share the same underlying mathematics. We find it significant that the gradients of the 
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orientation potentials provide a basis for an attraction that exists independently of the payoffs. In 

whatever frame we work, an important effect is that of acceleration. This is the symptom of the force of 

attraction. It is also the cause, at the global level, of the non-existence of a global frame that is 

simultaneously holonomic. 

The matter density is not the only contribution to the energy and momentum of the active space. 

There is also the effect from the payoff fields: 

 1
42 payoff j k cd cd k

ab jk ac bd ab k cdT F F g g F Fκ γ= −  (3.19) 

To physicists and electrical engineers, this is clearly an analogous form of the energy momentum fields of 

Maxwell, Eq. (2.18) applied to the case of multiple payoff fields corresponding to the players involved in 

a decision. As pointed out by Einstein, light has inertia. What we say in decision process theory is that 

payoffs have inertia. 

Again, these arise not from analogy but from the decision process theory. These are specific 

consequences of the existence of persistent behaviors. Einstein was the first to suggest that such radiation 

fields carry real inertial effects just like matter. He predicted that light would bend as it passes close to a 

star as a consequence of this inertial effect. Here also there will be real inertial effects that follow from the 

presence of the payoff fields. Qualitatively, it says that transactions with large payoff matrix elements 

carry more energy and will have more impact on dynamics than transactions with small payoff matrix 

elements. This is different from game theory in that two games can have proportional payoff matrices 

implying the same strategic consequence, even though one game might have small matrix values and the 

other large.  

The last contribution to the active space field equations Eq. (3.17) comes from the inactive metric: 

 
( )

1 1
2 4;

31 1
2 4 4; ; ; ; ;

jk jk

jk ab a b jk
inactive

ab jk cd cd mn jk cd jk

ab jk cd mn c jk d c jk d

T
g g g g

γ γ γ γ
κ

γ γ γ γ γ γ γ γ

 + ∂ ∂
 =
 − + + 

 (3.20) 

The inactive metric behaves as a matter field with a specific form determined by the field equations. The 

inactive metric field also carries inertia. It can be bent by strong gravitational sources. The existence of 

this field was not foreseen by our initial analysis in section 1.4. It is not uncommon however in theories 

based on those of (Kaluza, 1921) and (Klein, 1956). 

The last set of field equations obeys massless wave equations: 

 ( )1 1
2 4

ab jl j ab j

a b lk ab k kg F F Tγ γ κ∂ ∂ = −  (3.21) 

In the absence of sources, this is a massless wave equation (a Klein-Gordon field in physics texts). These 

fields (along with other possible fields) in Einstein’s theory could describe gravitational waves. Thus even 

in empty space there may be influences that propagate with the speed of light.  

In general, the active and inactive field equations determine metric potentials that are not Minkowski. 

Thus there is no a priori justification for requiring the active and inactive metrics to be flat. Even in 

spaces with no inertial sources, the payoffs contribute as sources and provide the source for curvature 

Thus given the equations, the next logical step is to apply the decision process theory using these 

equations for decision problems, solve the equations for such problems (numerically), analyze the results 

and based on the results, refine the theory. In the process we expect to grow a quantitative understanding 

of the decision process.  

With suitable computing power, we have sufficient information to apply the decision process theory 

to a wide variety of problems. As anyone in engineering knows however, it is not just the theoretical 

ability to solve problems that is of singular importance, it is also the practical ability to find sets of 

problems that can be solved and from them, the knowledge that gives the ability to build structures 

(bridges, circuits, etc.) that do desired things.  

We hope to demonstrate such a set of solvable and useful problems exist, in analogy to the set of 

problems that have been found in electrical engineering. In that discipline, great strides are made using 

the insights gained from electrostatics and magneto-statics, coupled with introducing time dependence 

using phasors (in mathematical terms, using Fourier series). The same mathematics of static solutions can 
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then be applied to phasor solutions to gain insight into dynamic steady-state behaviors. We are able to 

carry out this program for a class of models (chapter 4). It is our current belief that the local equations in 

the normal-form coordinate basis don’t always give a clear large scale global picture; but insight might be 

gained in other frames. In the next section, we return to the notion of persistency and express it in more 

general terms so that we can consider the field equations in other frames, specifically we will look at the 

equations in the orthonormal co-moving reference frames in section 3.6.  

3.5 Isometry and hidden symmetry 

Our intuitive definition of persistency (isometry) required the existence of the normal-form 

coordinate basis, in which the metric is independent of the inactive dimensions: these dimensions are 

hidden reflecting a hidden symmetry. Translations along each of these inactive dimensions leave the 

metric unchanged. In this section, we formulate this hidden symmetry covariantly so that we can 

transform the concept to other frames.  

In differential geometry, a transformation that leaves the metric elements unchanged is called an 

isometry. A necessary and sufficient covariant condition for there to be an isometry is that there is a 

vector field Kµ  satisfying the “Killing” conditions: 

 ; ; 0K Kµ ν ν µ+ =  (3.22). 

Since this is a covariant relation, to prove this we choose a holonomic coordinate system to which we can 

always transform the coordinates so that the vector field is unity along the dimension ξ  and zero along 

the other coordinates. The above condition implies that  

 
( )

;

; ;

; ;

2

0

K g K g

K g

K K g g g g g g g

K K g

ν
µ µν µξ

µ ν ν µξ ξνµ

µ ν ν µ ν µξ µ νξ ξνµ ν µξ µ νξ ξ µν µ νξ ν ξµ

µ ν ν µ ξ µν

ω

ω

= =

= ∂ −

+ = ∂ + ∂ − = ∂ + ∂ − −∂ + ∂ + ∂

+ = ∂ =

 (3.23) 

Therefore given the condition Eq. (3.22), there is a frame in which the metric is independent of the 

dimension ξ .  

Conversely if there is a frame in which the metric is independent of the dimension ξ , we pick K
µ

 to 

be the vector field that is unity along that direction and zero otherwise. The above argument again holds 

and we deduce Eq. (3.22). Since it is a covariant relation that holds in one frame, it therefore holds in all 

frames. This relationship is attributed to Killing. 

If there are two isometries there will be two Killing vectors K
µ

 and L
µ

. From two vector fields we 

create a new vector field called their commutator or Lie product Eq. (3.4): 

 [ ] ; ;K L L K
ν ν

µ ν µ νµ
= −K,L  (3.24) 

We leave as an exercise that the commutator of two Killing vector fields is itself a Killing vector:  

 [ ] [ ]
; ;

0
µ ν ν µ

+ =K,L K,L  (3.25) 

This has far reaching consequences. The set of all Killing vectors, which includes their commutators, 

form a Lie Algebra, with the Lie product. The isometries of the theory therefore generate a local 

symmetry group (i.e. a symmetry group at each point in space), which has the same structure at every 

point. This provides substance to the notion that isometries are persistent and reflect the local symmetry 

group. 

Isometries reflect properties of what we term an internal group, which gives substance to invariance 

and persistency associated with the inactive strategies. In particular, we see that the concept of 

independent players has in fact been framed as a group theoretical statement that there is a commutative 

subgroup at every point with exactly the same group structure. Because the operators commute we can 

always find a frame in which the metric components are simultaneously independent of all the associated 
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inactive dimensions. We now have a firm theoretical foundation. We next investigate the consequence of 

these isometries in a specific frame, a co-moving frame, using the harmonic gauge. 

3.6 Co-moving orthonormal coordinate basis 

Field equations of the type Eq. (3.1) and their solutions have been extensively studied, for example 

(Wald, 1984, p. 252ff), and (Hawking & Ellis, 1973). The essential point for us is that solutions to these 

field equations exist and have reasonable properties if the metric, orientation potentials, matter fields and 

gradients of these are specified initially on a surface “orthogonal to time”. The field equations then 

determine the evolution of the metric, orientation potentials, matter fields and flows on all surfaces that 

are “later”. Our goal is to use these solutions to decision process theory to better understand the decision 

process. We believe this understanding must be based on a quantitative understanding of the 

consequences of these field equations. To this end it is natural for us to adopt and adapt the approach to 

solving equations of this type that has proven useful in the past (Cf. section 3.3).  

For these reasons we look at the equations in a frame in which one direction is along the energy flow 

vector that arises naturally in considering the inertial fields Eq. (2.37). The energy flow direction is a 

natural “time” direction. In this frame we are co-moving so the vector has only a time component and the 

remaining directions are orthogonal unit vectors with respect to the metric. We further look for a system 

in which this metric is globally Minkowski. Because the metric is constant, in general the coordinates will 

not be holonomic. We call this frame the co-moving orthonormal coordinate basis or if there is no 

ambiguity, the co-moving basis. 

The Minkowski metric we denote as mαβ . It is diagonal with a value 1+  for the time like indices and 

1−  otherwise. For our discussion in this section
15

, we use Greek letters in the beginning of the alphabet 

{ }, , ,α β γ � to represent the dimensions in the co-moving basis and the Greek letters in the middle 

{ }, , ,µ ν λ�  to represent the dimensions in the normal-form coordinate basis when we don’t want to 

specify whether the dimensions are active or inactive. Thus in this latter case the indices span both active 

and inactive dimensions.  

In each frame there will be orientation potentials, which transform not as tensors but as specified in 

the frame transformation Eq. (1.63). In each frame the covariant derivative depends on these orientation 

potentials. We use the notation ;X
µ

ν for example, to indicate the covariant derivative that depends on the 

potentials 
µ

νλϖ  in the normal-form coordinate basis, Eq. (1.52). Ordinarily, the notation would be 

adequate for any frame, however when we switch back and forth between two frames, it is helpful and 

less ambiguous to have a special notation for the covariant derivative in the co-moving frame as well as a 

notation for the potentials in that frame. We use |X α
β  for the covariant derivative and 

α
βγω  for the 

orientation potentials in that frame.  To carry out our program of solving the field equations, which are 

frame covariant, we use the transformation properties of these potentials based on their gauge properties 

Eq. (1.63). 

We obtain the transformation properties of the orientation potentials from the transformation 

properties of the vector X µ  in the normal-form coordinate basis and its covariant derivative. The 

transformation is determined by the gauge transformation matrix E
µ

α  that takes the vector in the normal-

form coordinate basis to the co-moving frame: 

                                                      
15

 Later, we introduce the player fixed frame model in which we make further distinctions between some of these 

orthonormal coordinates, which we associate with “proper” active strategies and some we associate with “proper” 

inactive strategies (players). 
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X E X

X E X

E E

E E

µ
α α µ

α α µ
µ

α ν ν
µ α µ

µ β β
α µ α

δ

δ

=

=

=

=

 (3.26) 

We also provide above the inverse transformation. We raise and lower indices using the metric in the 

appropriate basis: 

 
E m E g

E g E m

αβ
µα νβ µν

µν
µα νβ αβ

=

=
 (3.27) 

The content of the first of these equations is that if the frame transformations Eµα  are known in the co-

moving orthonormal coordinate basis, then the normal-form coordinate basis metric components are 

determined. Moreover, since the normal-form metric has the property that 0ajg =  for all mixed tensors 

between the active and inactive space, the frame transformation will have to enforce this property. 

The frame transformations determine not only the metric elements from Eq. (3.27), but the payoff 

matrix Eq. (1.73) using the defining equations for the 1-forms: 

 1
2

j

abd F= ∧j a b
U U U  (3.28) 

The differential 2-form d
j

U  can be computed from the transformation from 
α

E  and the corresponding 2-

form based on zero torsion Eq. (1.54): 

 
|

j

j

E

d E

α

α β

=

= − ∧

j α

j α β

U E

U E E
 (3.29) 

Comparing the two expressions we find that each player field 
j

E  acts as the vector potential for the 

payoff in the co-moving basis: 

 | |

j a b j j j

abF E E E E fα β β α α β αβ= − ≡  (3.30) 

Thus whenever the transformations are determined in the co-moving basis, the co-moving payoffs 
jf αβ  

are determined. We note that the vector potential as used here is in the full model consisting of both active 

and inactive coordinates. In the normal-form coordinate basis, the potential above for each player j , is 

the covariant vector j

µδ . In mathematical form, this is the statement above that the payoff is associated 

with the single 1-form 
jU  with unit coefficient. 

As we develop the theory, a physical, geometric and global meaning of these transformations will be 

helpful. We make progress in this regard by looking at the implications of the transformations on the 

acceleration potentials, Eq. (1.63). Consider the set of directions along α  in the co-moving frame and the 

corresponding covariant vectors E
α

µ . The transformation rule for the acceleration potentials leads to the 

following form for the covariant derivative: 

 ;E E E E Eα α λ α α β γ
µ ν ν µ µν λ βγ µ νϖ ω= ∂ − = −  (3.31) 

We can use Eq. (3.31) to determine the orientation potential in one frame from the covariant derivative. 

An alternate form is the inverse: 

 |E E E E Eµ µ γ µ µ ν λ
α β β α αβ γ νλ α βω ϖ= ∆ − = −  (3.32) 

Here we consider the (inverse) transformation matrix E
µ

α  to be a vector field (time-like and space-like) 

in the co-moving orthonormal coordinate basis labeled by the normal-form dimensions µ . As noted, 

these expressions reflect the transformation properties of the acceleration potentials:  

 E E E E E Eα λ α µ ν µ ν α
βγ µν λ β γ β γ ν µω ϖ= − ∂  (3.33) 

Equivalently, we have the inverse relationship: 
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 E E E E E Eµ γ µ α β α β µ
νλ αβ γ ν λ ν λ β αϖ ω= − ∆  (3.34) 

These equations provide helpful relations as we formulate models. 

In the normal-form coordinate basis, we expressed the field equations based on the harmonic gauge. 

We finish this section by expressing the harmonic gauge condition and exactness statements in the co-

moving basis. The consequence of the harmonic gauge follows from Eq. (3.31), writing the active and 

inactive metrics out explicitly using the normal-form potentials: 

 
( )

; ;

1

ab jk

a b j k

ab

a b

g E E

g g E
g

α α αβ
β

α αβ
β

γ ω

γ ω
γ

+ = −

∂ = −
 (3.35) 

We use the harmonic gauge condition Eq. (3.13) to obtain: 

 
ab

a bg Eα αβ
βω∂ = −  (3.36) 

We will be interested in specifying frames that are torsion free, Eq. (1.54), that are orthonormal so that 

abg  is determined by the frames from Eq. (3.27), that have the orientation potentials determined by the 

field equations, that satisfy the frame equations Eq. (1.54) and that satisfy the wave equation Eq. (3.36). 

The advantage of this wave equation is that it is formulated in terms of the exact active strategies a
x  in 

the normal-form coordinate basis. 

As an example of the use of this wave equation, consider a model in which there is a direction in the 

co-moving orthonormal coordinate basis 
υ

E  that is also exact. Applying Eq. (3.3) to this, we have the 

condition ; ;E Eυ υ
µ λ λ µ= , which has the following solution: 

 
0a j

a b b a

E

E E

υ

υ υ

∂ =

∂ = ∂
 (3.37) 

The first equation requires each component to be constant; we pick the gauge in which the constant is 

zero, 0jE
υ = . Based on the second equation, there will be a potential field y

υ
 whose constant surfaces 

define a coordinate and whose associated vector field is determined by the potential, a aE y
υ υ= ∂ . That the 

space might be curved will limit the number of such coordinates. However when there is such a 

coordinate, the condition Eq. (3.35) provides the wave equation: 

 
ab

a bg yυ υβ
βω∂ ∂ = −  (3.38) 

If the metric is known in terms of the harmonic coordinates and if the same is true of the orientation 

potentials, this equation provides the coordinate potential y
υ

 in terms of the harmonic coordinates. 

An alternate and useful approach is to couple Eq. (3.32) with the harmonic gauge condition, 

considering the active and inactive dimensions separately: 

 
( )|

|

1
0

0

a a bc a kl ab

bc kl b

j j bc j kl

bc kl

m E g g g
g

m E g

αβ
α β

αβ
α β

ϖ ϖ γ γ
γ

ϖ ϖ γ

= − − = ∂ =

= − − =

 (3.39) 

The active components are zero because of the harmonic gauge condition Eq. (3.13) and the inactive 

components are zero because of the properties of Eq. (1.74). Because the active directions are exact, we 

have in addition, Eq. (3.3): 

 | |

a aE Eα β β α=  (3.40) 

This determines the exactness condition in the co-moving frame in terms of the orientation potentials. In 

this frame there is no guarantee that the differential operators commute, so we don’t expect that in this 

frame the transformation matrix will be expressed in terms of the gradients of a potential field. This is an 

example where our intuition from Newtonian physics is not helpful. We anticipate that the directions that 

don’t commute will be the flow direction with any direction whenever there is frame rotation. 
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The geometric significance of the influence of frame rotation can be illustrated with the simple 

example of a sphere (Gockeler & Schucker, 1987), where the latitude and longitude are holonomic 

coordinates { },θ φ  but they are not orthonormal. The coordinates on a sphere that are orthonormal are 

{ }sin ,d dθ φ θ , however these coordinates are not holonomic. From Einstein’s theory, time and a space 

direction { },t u  may be holonomic but not orthonormal. The coordinates that might be orthonormal are 

{ },ttg dt du , but in general these will not be holonomic because of frame rotation effects. 

We will have occasion to use both types of frames in subsequent chapters. For example we 

distinguish the co-moving basis as short for the co-moving orthonormal coordinate basis. This frame in 

general is not holonomic. Following the nomenclature and previous analysis (Thomas G. H., 2006), there 

is also a central holonomic frame (Cf. section 4.8, exercise 53). In general this frame will not be 

orthonormal. We extend the previous analysis by solving the field equations for a class of models whose 

behaviors will be displayed in both frames. 

3.7 Decomposition of the orientation potentials γ
αβω   

We have a general decision process theory that leads to field equations Eq. (3.1) that allow us to 

investigate decision processes using the scientific method to expand our understanding and our approach. 

We have players identified in a persistent way with inactive strategies along with the decisions they make 

that are active. We treat time as an active dimension.  We have argued that there always will be a time-

like unit vector that describes the flow of energy as well as a metric tensor such that these vectors and 

tensors depend only on the active strategies available to each agent. Decisions occur in this space-time a
x  

that ranges over time and the active strategies.  In this normal-form coordinate basis, none of the tensors 

depend on the inactive space components 
jξ . In this frame, the metric components between the active 

and inactive space are zero. In the last section, we extended this general discussion to the co-moving 

orthonormal coordinate basis. 

The vector Eq. (2.37) representing the flow of energy occupies a central role in the theory. Some of 

the orientation potentials related to the flow in the co-moving frame have large scale geometric 

significance that makes it easier to understand the anticipated behaviors. We take one of the orthonormal 

coordinate basis vectors to be the flow of energy E Vο
µ µ= . We indicate this dimension by the Greek letter 

ο .  

The following choices have proved insightful in the study of fluids. We believe they will be helpful in 

the study of decision processes. The application of the transformation rule Eq. (3.31) can be used to 

define an antisymmetric vorticity tensor αβ βαω ω= − , a symmetric expansion tensor αβ βαθ θ=  and an 

acceleration vector q
α

: 

 

; ;

0

E V E E E E q E V

q

ο α β α β α
µ ν µ ν αβ µ ν αβ µ ν α µ ν

ο
αβ αβ αβ

ο
αο α

ο
οα

ω θ

ω ω θ

ω

ω

= = + +

= − −

= −

=

 (3.41) 

There is no term proportional to V E α
µ ν  because unit flow is orthogonal to its covariant gradient; 

equivalently we use the antisymmetric nature of the orientation potential Eq. (1.60) in the first two indices 

to prove this.  

Thinking of the flow as a fluid, one considers a unit cube of fluid and follows its path in the co-

moving frame. The cube can rotate where the rotation is specified by the vorticity tensor and the cube can 
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expand, contract or shear as specified by the expansion tensor. The acceleration of the cube is given by 

q
α

 in the co-moving coordinate basis since 

 ;

DV
V V q E

µ ν α
µ ν α µ

τ
= =

∂
 (3.42) 

Because the orientation potentials are antisymmetric in the first two indices, these same parameters 

determine αοβω , so that an expansion of a vector transverse to the flow is: 

 ( );E q V V V E E V E E
α α α α β α β α β γ

µ ν µ ν β β µ ν β µ ν βγ µ νω θ φ ω= − − + + −  (3.43) 

In this expression none of the indices are along the flow, , , ,α β γ ο≠� . We define a rate of change of the 

transverse vector as   

 
FD E DE

q V E

α α
µ µ α α β

µ β µφ
τ τ

= + =
∂ ∂

 (3.44) 

We have introduced the Fermi derivative (Hawking & Ellis, 1973) to define the rate of change: 

 FD X DX DV DV
X V V X

µ µ ν µ
µ ν

ν ν
τ τ τ τ

≡ + −
∂ ∂ ∂ ∂

 (3.45) 

This rate of change, which is defined in terms of the covariant derivative, has the following useful 

properties that help us understand the geometric meaning of the orientation potentials. Any pair of vector 

fields that have zero Fermi derivative will maintain lengths and angle. The Fermi derivative measures the 

amount of rotation of the basis. Using the Fermi derivative, we deduce that the significance of the 

antisymmetric orientation potential coefficients αβ αβο βαφ ω φ= − = −  is that they specify the frame rotation 

along the path. 

We note that transformation to the flow vector has both active and inactive components a
V  and j

V , 

which is a transformation to a vector field whose 1-form does not in general vanish. In other words, the 

flow corresponds in general to a 1-form that is not exact. In Einstein’s theory of relativity, this is stated as 

the twin paradox: twins travelling along different paths may age differently as a result of their paths 

seeing different accelerations: the paths are not inertial. This is true in this theory as well. This makes 

sense because we expect the flow to reflect the influence of sources that generate acceleration. We 

address the question about whether the transverse components of the orthonormal set need be exact in the 

next section. 

3.8 Player fixed frame model 

We see that a key characteristic of behaviors in this theory will be the vorticity and frame rotations. 

We focus our study using a specific model in which the expansion tensor plays little role. We recall our 

assumption that space-time locally has the property that in an open set of any local region, the distinction 

that strategies have values is expressed mathematically by the existence of a scalar function a
x  that 

defines a hyper surface in that region (of dimension one less than the total dimension of the space-time). 

We say that the coordinate 1-form is exact, meaning its 1-form vanishes, 0d =α
U . In the normal-form 

coordinate basis, the inactive strategies are not exact whereas time and the active strategies are exact.  

Let us suppose that there are a
n  active strategies in the normal-form coordinate basis, 

in  inactive 

strategies or players giving a total of 
a in n n= +  space dimensions. We consider a wide class of models 

formulated in the co-moving orthonormal coordinate basis, which we call the player fixed frame model, 

in which there are a
n  proper-active strategies y

υ
 in which the corresponding 1-forms are exact. We 

denote these active strategies by the Greek letters { }, , ,υ υ υ′ ′′… . In addition to the proper time coordinate 

{ }ο , which is the coordinate along the flow and these proper-active strategies { }υ , we assume the 
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remaining 
in  strategies are inactive and denote them by { }, , ,α β γ �  and term them proper-inactive 

strategies. In general, the proper time coordinate and the proper-inactive strategies will not be exact. 

This is a very broad class of models in that we allow any number of players, any number of strategies 

and any specification of inertial and applied forces. Though this class of models appears to us currently as 

natural, we will need to consider a broader class of models as we gain better tools with which to solve the 

equations. For now however, this class of models we think of sufficient interest to form the basis for 

quantitative examples in this book. 

We analyze the consequences that the proper-active strategies are exact Eq. (3.37). We also write in 

the co-moving basis, the condition that the inactive strategies satisfy the Killing conditions Eq. (3.22). 

The first set of consequences follows from the assumption of exactness, Eq. (3.37): 

 
0j

a b b a

E

E E

υ

υ υ

=

∂ = ∂
 (3.46) 

The consequence of the exactness condition 0d =υ
E  can be imposed also on the torsion free requirement 

Eq. (1.54):  
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′ ′ ′ ′′

′
′ ′

≠ ⇒

 − ∧ + ∧
 = =
 + − ∧ + − ∧ + ∧ 

υ ο υ υ

υ

α υ α α β

E E E E
E

E E E E E E

 (3.47) 

We have expanded the wedge product using the notation from the previous section, where we separate the 

behaviors along the energy flow direction, the proper-active strategy directions and the remaining proper-

inactive strategy directions.  

We convert the consequence of exactness to conditions on the orientation potentials. We write these 

orientation potentials using the decompositions Eq. (3.41) and (3.43): 
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 (3.48) 

With this notation the five distinct terms give five sets of conditions, which can be simplified: 
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= = − = = −
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 (3.49) 

These conditions along with the additional conditions Eq. (3.46) on the frame implies that there is a 

coordinate potential y
υ

 that is a scalar function of the harmonic coordinates and a aE y
υ υ= ∂ . 

We add the following additional assumptions to the player fixed frame model that we have found by 

trial and error to be consistent and provide us a subclass of solvable models that articulate one notion of 

large scale persistency: 
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0

0

0

q
α

αβυ αβ αβγ

αβ αβ

ω θ ω

φ ω

=

= = =

= − =

 (3.50) 

Unless otherwise stated, we take this subclass to be the player fixed frame model, though we can’t 

exclude other possibilities. We will justify that these conditions are indeed consistent and articulate this 

notion of persistency. To obtain further relationships, we pursue the consequences of persistency as 

viewed in the co-moving basis. We do that in the next section. 

3.9 Persistency under the player fixed frame model 

In the last section we took a step closer to what we claim will be a complete set of numerically 

solvable equations with which to determine the properties of the decision process theory based on a 

general theoretical framework. We articulated an approach by considering a wide class of models, the 

player fixed frame model.  

That we expect these models are solvable numerically requires some explanation. There are theorems 

that show that the field equations Eq. (3.1) have solutions for any model. The general theorems don’t yet 

provide tractable ways of doing the numerical analysis for these coupled non-linear partial differential 

equations for all models. Instead, solvable models based on simplifications are constructed that help one 

to understand particular features of the theory. What we would like to do is find such a set of solvable 

models. We believe the current approach comes close to meeting these criteria, as well as providing 

additional insight into the meaning of the equations. To proceed we have three remaining steps.  

• We impose the consistency of the orthogonality relations Eq. (3.27).  

• We analyze the Killing relations Eq. (3.22).  

• We provide the field equations Eq. (3.1) in the co-moving orthonormal coordinate basis.  

In this section we address the Killing relations. In the next chapter we address the field equations and 

provide a set of solvable models in section 4.5. 

We flesh out the consequences based on the player fixed frame model from the orthogonality relations 

(3.27) for the mixed tensor components that are zero: 

 0a j a jE E E E
ο α

ο α+ =  (3.51) 

There are no terms with 
jE
υ  since these transformation components are zero because the exactness 

condition of 
υ

E  implies Eq. (3.46). Implicit is our assumption that the matrix 
jE
α  is not singular, which 

implies that the transformation vector 
aE α  is proportional to 

aE ο : 

 
a aE e Eα α ο=  (3.52) 

Substituting this into the expression Eq. (3.51), we get a projection of the flow onto the inactive 

directions: 

 ( ) 0a j jE E e E
ο α

ο α+ =  (3.53) 

Because at least one component of the timelike flow is not zero, the implication is: 

 j jE e Eο α
α= −  (3.54) 

A consequence of this rule is that if we interpret 
jE
ο  as the charge for player j , then eα is the proper 

charge for proper-player α .  

The orthogonality relations also demonstrate that the derivative operator associated with the proper 

inactive strategy is not zero but proportional to the proper time frame derivative: 

 
a

aE eα α α ο∆ = ∂ = ∆  (3.55) 

We call ο∆  the variation along the flow, the variation along the proper time coordinate. We also see that 

the operator j∂  is zero based on Eq. (3.54), as it should be on the space of functions of interest: 



 © 2012-2015 Gerald H Thomas  

70 

 

 ( ) 0a a

j j j aE E E e E
ο α

ο α ο∂ = + ∂ =  (3.56) 

We get further information on the charge by considering the consequences of gauge invariance using 

the wave equation Eq. (3.38) and its companion Eq. (3.36) for the flow: 

 
0

ab

a b

ab

a b

g y q

g E

υ υ υβ
β

ο

ω∂ ∂ = − −

∂ =
 (3.57) 

Here we make use of the assumptions above concerning the values of the orientation potentials. We apply 

Eq. (3.52) to the gauge condition Eq. (3.36), and get: 

 ( ) 0ab ab

b a b ag E g e E
α ο

α∂ = ∂ =  (3.58) 

This shows that the “charge” is conserved along a streamline. 

 
( )0
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ab ab ab ab

b a b a a b b a
g e E e g E g E e e g E e

e

ο ο ο ο α
α α α α ο

α
ο

= ∂ = ∂ + ∂ = ∂ + ∆

⇒ ∆ =
 (3.59) 

The result follows directly from the second line in Eq. (3.57). 

Since the coordinates a
x  are exact, this coordinate vector 

a
E α  in a new coordinate system satisfies 

Eq. (3.40): | |

a aE Eα β β α= . For the player fixed frame model, we apply these conditions and find that there 

are two distinct classes of equations: 

 
( )

2

2 2

a a a a

a a a

E E q E e E

E E e E

α
ο υ υ ο υ ο υ α ο

α
υ υ υ υ υυ υυ α ο

θ

ω ω′ ′ ′ ′

∆ − ∆ = − −

∆ − ∆ = −
 (3.60) 

This shows that in this basis, the vector fields are determined. The first equation determines the “curl” of 

the vector field in terms of the acceleration and what we show below is the electric field in the co-moving 

frame. The second equation determines the “curl” in terms of what we show later to be the payoff matrix 

in the co-moving frame.  

We have determined equations for all the vector fields 
a

E  associated with the active components. We 

now turn to the vector fields jE  associated with the inactive components. In the normal-form coordinate 

basis, the Killing vectors are the inactive vectors that lie along each of the coordinate directions. So for 

example the Killing vector field ( )K j
µ

 along the j  direction has components ( ) jK j
µ µδ= . We 

transform this to the co-moving basis to get: 

 ( ) ( ) jK j E K j E
ρ µρ ρ

µ= =  (3.61) 

We interpret the transformation field j
E ρ

 for each fixed inactive strategy j  to be the Killing vector field 

in the co-moving frame. 

Given our decomposition of coordinates into proper time, proper-active and proper-inactive, there are 

six cases of the Killing relation Eq. (3.22) to consider, using the notation of the previous section that 

, , ,α β γ ο υ≠ : 

 

| |

| |

| |

| |

| |

| |

0

0

0

0

0

0

j j

j j

j j

j j

j j

j j

E E

E E

E E

E E

E E

E E

α β β α

υ ο ο υ

α ο ο α

υ υ υ υ

α υ υ α

ο ο ο ο

′ ′

+ =

+ =

+ =

+ =

+ =

+ =

 (3.62) 

We summarize the result for each case in order, leaving to the exercises at the end of the chapter the 

derivations. 
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1. We start with the first case and write out the covariant derivative in terms of the orientation 

potentials with the player fixed frame model that the transformations depend only on the 

proper time coordinate and proper-active strategies: 

 0
j j

e E e Eβ ο α α ο β∆ + ∆ =  (3.63) 

2. The second case provides the proper time variation of the proper-active strategy of the Killing 

vector field components: 

 2
j j j

E q E Eα
υ ο υ ο υ αω∆ = − −  (3.64)  

3. The third case provides the time variation of the proper-inactive strategies of the Killing 

vector field components to be zero and shows that Eq. (3.63) is identically satisfied: 

 0
j

Eο α∆ =  (3.65) 

4. The fourth case has no time derivatives and is identically satisfied based on Eq. (3.46): 

 0
j j

E Eυ υ υ υ′ ′∆ + ∆ =  (3.66) 

5.  The fifth equation gives the spatial dependence of the proper-inactive components: 

 2
j j j

E E Eβ
υ α αυ ο υα βθ ω∆ = − −  (3.67) 

6. The sixth case is the time derivative of the component of the Killing vectors along the energy 

flow: 

 0
j j j

E q E q Eα υ
ο ο α υ∆ = + =  (3.68) 

7. The last equation due to Eq. (3.54) determines the “charge” gradient: 

 2 2e q e e e eβ β
υ α υ α υα βυ α υαβω θ ω∆ = − + − +  (3.69) 

The important overall result is that we get first order partial differential gradient equations for the 

proper-time evolution of the flow component, proper-active components and proper-inactive components 

of each Killing vector field. We get two sets of constraint equations involving gradients and one algebraic 

equation. The frame transformations { },
j j

E Eα ο  are independent of proper time and the remaining 

components j
E υ  are zero.   

These equations determine the inactive metric and show that it is independent of proper time, since 

each of the components is similarly independent: 

 jk j k j k
E m E E m Eοο αβ

ο ο α βγ = +  (3.70) 

From the harmonic gauge conditions Eq. (3.39)  and exactness conditions Eq. (3.60) we obtain the 

equations that determine 
a a

E Eο υ : 

 
( ) ( )1

2

a a a

a a a a

e e E E q E

E E q E e E

α ο υ υ υα
α ο υ α υ

α
ο υ υ ο υ ο υ α ο

ω

θ

+ ∆ = −∆ + +

∆ = ∆ − −
 (3.71) 

Given this solution to Eq. (3.71), the active metric is determined: 

 ( )1ab a b a b
g e e E E E E

α ο υ
α ο υ= + +  (3.72) 

The active metric may depend on proper-time. Even in the case that it is independent of proper-time, it 

does depend on the acceleration and so there will be effects due to acceleration in the solution. 

We have pointed out previously, Eq. (3.30), that the co-moving payoff is determined once the 

transformations are known. We can also proceed as follows to determine the payoff. The payoff matrix is 

an acceleration-potential in the normal-form coordinate basis, Eq. (1.74) as seen for example in jab
ϖ . 

Since the orientation potentials are related, we us Eq. (3.32) to determine the payoff fields: 

 
( )( )( )( )

1
2

j j

a b a b
j

ab j j j j

a b a b

E E E E E E
F

q E E e E e E E E E E

υ υ α υ υ ο
αυυ υυ

ο α α ο α β ο υ υ ο
υ υα υα υαβ

ω ω

ω θ ω

′ ′
′ ′ −

 =
 + + + + + −
 

 (3.73) 
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The expression is informative. It shows that terms such as αυυω ′  determine the payoff matrix and that the 

electric field is determined by υα υαω θ+ . This shows that we are on the right track and that we can gain 

insight into the equations in the co-moving frame. From this form we determine also the various co-

moving payoff components: 

  

 

( )( )( )( )

0

0

2 1

2 2

j

j

j j

j j j j j k

k

j j j

f

f

f e f

f q E E e E e E E E

f E E

οα

αβ

αυ α ου

ο α α ο α β ο
ου υ υα υα υαβ ο

α ο
υυ αυυ υυ

ω θ ω

ω ω′ ′ ′

=

=

=

= + + + + −

= −

 (3.74) 

Zero payoffs in the co-moving basis are required between proper-inactive strategies and the proper time 

coordinate and between proper-inactive strategies. 

We need the field equations using Eq. (3.1) and its explicit form in terms of orientation potentials Eq. 

(1.67) applied to the co-moving frame to provide the complete set of equations. The field equations will 

provide first order partial differential equations for the orientation potentials. We examine these equations 

in the next chapter, where we see the vorticity effects are made explicit as well as additional gradient 

effects. We show there to what extent we can reduce the equations to linear coupled differential equations 

that provide the underlying mechanisms for vorticity behaviors and gradient behaviors of decision 

processes. 

3.10 Outcomes 

After completing this chapter, the student should understand that persistency in decision process 

theory defines what it means to be an agent or player. The underlying mathematical structure is the group 

of isometries, showing the relationship between agents, players and measurement. There are quantitative 

consequences from this group of isometries that are expressed by differential equations, which have 

unique solutions in the harmonic gauge, given initial conditions specified on a space like hypersurface 

orthogonal to time. The equations have analogs to equations from physics, though these equations 

describe a different space, time and phenomena. The student should learn that the large scale behavior of 

the theory differs from the local behaviors because of the possibility of acceleration: i.e. dynamic changes 

of strategic choices.  We have approached the large scale behaviors by introducing the player fixed frame 

model in both the normal-form coordinate basis and the co-moving coordinate basis. This model refines 

our notion of large scale persistency in a way that is consistent with and follows from the local principles 

of the theory.  

The attainment of the outcomes is facilitated by doing the exercises at the end of this chapter. To 

further help the reader, we list more detailed outcomes from this chapter by section. 

• From section 3.1, the student will have learned that decision process events at each point in 

time can be described locally in a coordinate (holonomic) basis in which each coordinate is a 

surface of constant potential for a potential field whose normal provides the coordinate 

direction. This underlies the assumption that we can specify the distance between any two 

decision process events at separate points in time.  

• In section 3.2, the student learns that in the normal-form coordinate basis, gauge invariant 

results are directly obtained. This provides an example of a “global” basis that has advantages 

over the “local” coordinate basis. Though not holonomic, the basis is effectively holonomic 

when transformations are restricted to the active subspace. 

• In section 3.3, we frame the field equations in the normal-form coordinate basis using the 

harmonic gauge that removes the gauge degrees of freedom. These field equations form the 

basis for the quantitative predictions of decision process theory. 
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• In section 3.4, the field equations that result are derived, supported by results from the 

exercises. These equations provide the student a guide to the behaviors expected in the theory 

and can observe the similarities and differences between decision process theory and physical 

theories. 

• In section 3.5 the student will have learned that the Killing relations from differential 

geometry provide a covariant articulation of isometry, which is a common group structure at 

each point of space and time. In decision process theory, the set of players form the basis of 

this symmetry and so are persistent attributes of any solution. 

• In section 3.6, the student will be introduced to the co-moving orthonormal coordinate basis. 

The student should be able to transform between this basis and the normal-form coordinate 

basis and understand how to express the covariant derivatives, exactness conditions and 

harmonic gauge conditions in each basis. 

• In section 3.7 as preparation for creating models in the co-moving basis, a geometric 

decomposition of the orientation potentials is given. Certain of the orientation potentials 

describe how the frame rotates when moving along particular directions. 

• In section 3.8 the player fixed frame model is defined and the consequence of exactness 

developed. 

• In section 3.9, the consequences of persistency are developed, along with the further 

constraints of the commutation constraints and harmonic gauge constraints. The student 

should understand the basis of this class of models and the defining equations of this model in 

the theory. 

3.11 Exercises 

1. Using the transformation to normal-form coordinates Eq. (1.71), show that the Lie product of any 

two inactive vectors is zero, , 0  = j kU U . 

2. Using the transformation to normal-form coordinates Eq. (1.71), show that the Lie product of an 

active and an inactive vector is zero, [ ], 0=a kU U . 

3. Using the transformation to normal-form coordinates Eq. (1.71), show that the non-zero 

components of the Lie product of any pair of active vectors are [ ],
j j

abF= −a bU U , which 

correspond only to gradients in the inactive space. If one restricts attention to fields that are 

independent of the inactive coordinates, then the active vectors commute. 

4. Use the covariance property of the “covariant derivative” to develop the formulae Eq. (3.31) and 

(3.32). Further, show for fixed choices of coordinate values { },µ ν  that the transformations 

{ },E E
α β

µ ν  represent the corresponding coordinate directions in the new frame. Show that their 

Lie product is: 

 ( ), E
α λ λ α

µν νµ λϖ ϖ  = − − µ νE E  (3.75) 

5. Using Eq. (3.75), show that the Lie product of the coordinate directions vanishes if and only if the 

orientation potentials 
λ

µνϖ  are symmetric in the last two indices. Using the inverse 

transformation below, what do you conclude about the Lie product of the transformed coordinate 

directions: 

 ( ), E
µ γ γ µ

αβ βα γω ω  = − − α βΕ E  (3.76) 

6. Demonstrate the following form for the curvature tensor components from 
a

b
RRRR  Eq. (2.28), where 

abcd
R  are the curvature components as computed in a geometry of only the active coordinates: 
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 ( )

( )

1 1 1
2 4 4

1 1 1
4 4 2

;

1
4

j k j k j k

abcd abcd jk ab cd jk ac bd jk bc ad

k k k

abcj b kj ac bc a jk jk ab c

l cd m l cd m ml ml

abjk jl km ac db jl km bc da a jm b kl b jm a kl

R R F F F F F F

R F F F

R F g F F g F

γ γ γ

γ γ γ

γ γ γ γ γ γ γ γ γ γ

= − − +

= − ∂ + ∂ −

= − − ∂ ∂ + ∂ ∂

 (3.77) 

7. Demonstrate the following form for the curvature tensor components from 
i

j
RRRR  Eq. (2.28): 

 

1 1 1 1
4 4 4 4

1 1
4 4

1 1
4 4

1 1
4 4

ij jk il il jk cd i j cd i j

ab lk a b lk a b ac bd bc ad

ijk ac ik j ac jk i

b a cb c ab

ab ab

ijlm a im b jl a il b jm

ijkl ab il jk ab ik lj

a b a b

R g F F g F F

R g F g F

R g g

R g g

γ γ γ γ γ γ

γ γ

γ γ γ γ

γ γ γ γ

= ∂ ∂ − ∂ ∂ − +

= ∂ − ∂

= ∂ ∂ − ∂ ∂

= ∂ ∂ − ∂ ∂

 (3.78) 

8. Demonstrate the following form for the curvature tensor components from 
a

j
RRRR  Eq. (2.28): 

 

( )1 1 1
4 4 2; ; ;

1 1 1
4 2 4; ; ;

1 1
4 4; ;

k k k

ajcd jk c ad kj d ac jk cd a

cd m l lm

ajbk jl km ac bd jk ab kl a mj b

bd m bd m

ajlk lm jk d ab km jl d ab

R F F F

R g F F

R g F g F

γ γ γ

γ γ γ γ γ γ

γ γ γ γ

= − + −

= − +

= −

 (3.79) 

9. Using 
j

abc
R  from Eq. (3.79) and 0j j j

abc bca cab
R R R+ + =  from Eq. (2.71), show Eq. (1.20), 

which implies that the payoff matrix is derivable from a potential. 

10. Using the explicit forms from the previous exercises for the curvature tensor in the normal-form 

coordinate basis, show that the Einstein Eq. (3.1) yields the generalization of Maxwell Eq. (3.14) 

in the harmonic gauge. In a general gauge, show that the result is: 

 ( )1
2

;

1 bc k

jk ab ja
c

g F Tγ γ κ
γ

=  (3.80) 

11. Using the harmonic gauge and the additional “covariant” gauge condition Eq. (3.15), develop the 

wave equations for the player vector potentials Eq. (3.16) from Eq. (3.80). 

12. Using the explicit forms from the previous exercises for the curvature tensor in the normal-form 

coordinate basis, show that the Einstein Eq. (3.1) yields the field equations Eq. (3.17) for the 

active strategies. 

13. Using the explicit forms from the previous exercises for the curvature tensor in the normal-form 

coordinate basis, show that the Einstein Eq. (3.1) yields the field equations Eq. (3.21) for the 

inactive strategies. 

14. Write and discuss the field equations in the absence of a matter field and with inactive and active 

metric components equal to their Minkowski (flat) values. 

15. Show that Poisson’s law, Eq. (3.18), results as a static, weak field limit of Eq. (3.17).  

16. Demonstrate that the commutator (Lie product) of two Killing vectors is again a Killing vector 

17. Show that the results Eq. (3.49) follow from Eq. (3.48). 

18. Using the expression for the Lie product Eq. (3.76), for the player fixed frame model and using 

the notation for that model from section 3.8, show that the Lie product for co-moving basis 

proper-active strategies are: 

 
[ ] ( )

[ ]

, 2

, 2 2

a a

j j j

e E

E E

α ο
υυ αυυ

ο α
υυ αυυ

ω ω

ω ω

′ ′ ′

′ ′ ′

= −

= −

υ υ

υ υ

Ε E

Ε E
 (3.81) 

19. Using the expression for the Lie product Eq. (3.76), for the player fixed frame model and using 

the notation for that model from section 3.8, show that the Lie products for co-moving basis 

proper-active strategies with the co-moving flow vector are: 
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[ ] ( )

[ ]

, 2

, 2

a a

j j j

q e E

q E E

α ο
υ υα

ο α
υ υα

θ

θ

= − +

= − −

ο υ

ο υ

Ε E

Ε E
 (3.82) 

20. Using the expression for the Lie product Eq. (3.76), for the player fixed frame model and using 

the notation for that model from section 3.8, show that the Lie products for co-moving basis 

proper-active strategies with the proper-inactive strategies are: 

 
[ ]

[ ]

, 2

, 2

a a a

j j j

e E E

E E

β ο ο
υαβ υα

β ο
υβα υα

ω ω

ω ω

= − −

= − −

υ α

υ α

Ε E

Ε E
 (3.83) 

21. Using the expression for the Lie product Eq. (3.76), for the player fixed frame model and using 

the notation for that model from section 3.8, show that the Lie products for co-moving basis 

proper-inactive strategies and of these strategies with the co-moving flow are: 

 , , 0
µ µ

   = =   α β ο βΕ E Ε E  (3.84) 

22. Deduce the seven cases that are provided that follow from Eq. (3.62). 

23. Derive the following for the gradients of the inactive metric: 

 
( )( )2 2 2

0

jk j k j k j k j k

jk

q E E E E E E E Eα α α β
υ υ ο ο υα υα ο ο υαβ

ο

γ ω θ ω

γ

∆ = − − + + −

∆ =
 (3.85) 

 


