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4 Stationary Harmonics 
We have identified the mathematics of decision process theory. We now need to identify the concepts 

and distinctions of that theory as applied to decisions. We turn to engineering for guidance. For example 

in electrical engineering, a large effort is devoted to learning about DC circuits since the concepts can 

then be applied to AC circuits. The general case of transient behavior can then be understood in that 

context. Similarly in mechanical engineering we can start with statics, and then proceed to a description 

of standing waves, steady-state waves and finally general dynamics. We would like to do the same for 

decision process theory. 

We think stationary models may help illuminate how we use the decision process theory for 

engineering models in general. For those familiar with electromagnetic theory, we note that our approach 

is analogous to starting with magnetostatics in which the currents are static and the magnetic fields don’t 

vary in time. We then extend such solutions to harmonic solutions (phasors). Such electrodynamics 

models provide significantly more insight than electrostatic models and with concepts of phasors 

(harmonics), provide an important step towards a full understanding of the theory. We go from DC 

circuits to AC circuits. The only step missing is the study of transient effects, which is also illuminated by 

this approach. 

The simplest situation however is not strictly analogous to an electric circuit; however it does have a 

lot in common with transmission lines and travelling waves. In both cases it makes sense to work in a 

frame of reference in which the behavior is observed to be stationary. If we travel along with the wave, 

then there will be no observed flow. In this chapter we consider the case of decision processes that have 

that property: it is possible to find a co-moving frame of reference in which all of the dynamic attributes 

of the problem are stationary. Technically, this means it should be possible to identify a frame of 

reference that is co-moving, holonomic and one in which time and the inactive player strategies are 

persistent and mutually commuting. We could then use the principle of least action to provide us with the 

equations of motion. With sufficient numerical techniques we could then solve these equations. 

There is a barrier however to understanding. There are a large number of equations, which represent a 

large number of concepts that we have not explored. The purpose of this chapter is to carry out this 

exploration. To achieve that goal, we find it useful to take a bottom up approach rather than a top down 

approach. We start with a specific class of models that leads to our goal, the player fixed frame models. 

We write the consequences of each of the equations of motion and see what distinctions are implied. This 

is a challenging task because it demands a fair amount of mathematical juggling. To help the reader 

follow the thread, much of the work is summarized in tables and the details are left as exercises. Toward 

the end of the chapter we return to the goal stated here and demonstrate that we have indeed solved the 

class of models of interest: models that have stationary wave behaviors.  

The detailed plan of the chapter is as follows. We first rewrite the field equations in the co-moving 

orthonormal coordinate basis, or co-moving basis for short. We then review the frame equations in this 

co-moving basis, followed by the field equations making the assumptions of the player fixed frame 

model. The basic results of the chapter are summarized in four tables, Table 4-1, Table 4-4, Table 4-5 and 

Table 4-6. The expressions for the frame are provided in section 4.1. In section 4.2 we show how we 

generated the field equations in the co-moving frame and in section 4.3, we simplify the expressions using 

the player fixed frame model. To interpret these results for decision process theory, in section 4.4 we 

articulate the distinctions that result from an examination of this model. Section 4.5 discusses these 
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models in which the orientation potentials are stationary, though the coordinate wave equation produces 

active coordinates that are not. In an exercise, it is shown that models in this class can be written in a co-

moving holonomic frame in which time is inactive. This justifies the assertion that there is a holonomic 

central frame in which time is inactive. With sufficient computing power, models in this class admit full 

numerical solutions using coupled partial differential equations, albeit with a rather large number 

(potentially hundreds) of variables. In section 4.6, we provide a sub-class of models that have a single 

active strategy. Models in this class admit full numerical solutions using coupled ordinary differential 

equations.   

4.1 Player Fixed Frame Model 

Before diving into the equations and the model, let’s recall how we got to this point. We have 

emphasized the importance of having a common ground for the discussion of decision processes based on 

a theoretical and scientific framework. The framework should be based on generally agreed principles. 

We suggest the common ground be based on the mathematics and empirical basis of physical theories as 

well as the foundations of game theory and related works in economics. In decision process theory, we 

take a unified and consistent view, which has led us to replacing static theories and equilibrium 

frameworks with the physical principle of least action articulated as the field equations, Eq. (3.1). We 

have demonstrated that this mathematical expression, though compact, in addition to providing the self-

consistent framework summarizes a great deal of information that we believe is commonly understood to 

be part of the decision process. In section 3.4, using the normal-form coordinate basis, we expanded the 

field equations into three sets of equations and sketched the information that might be derived from each 

set.  

To make further progress in extracting predictions from decision process theory, we consider models 

that have attributes in common with static models; this is in the same sense that DC circuits provide 

insight into AC circuits. We can use the same mathematics as long as we extend the interpretation of what 

the mathematics represents.  

We don’t however make those assumptions at the outset. Our bottom up approach is to proceed with 

the program set out in section 3.9 to find solvable models based on simplifications that are constructed to 

help us understand the features that are particular to decision process theory. We explore the properties of 

the player fixed frame model introduced in the last chapter, which highlight the role of agents and players 

as manifested by their vorticity, gradient and persistency properties. This is a general class of models that 

articulates large scale structure that we think will be attributes of every decision process. We emphasize 

that this approach is designed to help us understand the content of the theory.  

We want to impose no practical barriers to considering small or large number of players, to including 

competition or to include variations depending on whether or not the games are fair. Furthermore, at the 

outset we want to consider that active decision flows are dynamic, which is to say that they change in 

time. We have to deal with some challenges however due to the complexity of the equations. The 

equations become increasingly more complex as the number of active strategies increases. These 

considerations have influenced our choice of assumptions with the player fixed frame model in section 

3.8. Without limiting the number of active strategies, we impose the restriction that in the co-moving 

frame, the active strategy preferences are holonomic. 

We find that the field equations and frame equations can be solved more easily than the wave 

equations that lead us back to the harmonic coordinates. We therefore break out some of the complexity 

of the problem by moving to the co-moving orthonormal coordinate basis. We think the field equations in 

the co-moving frame provide significant initial insight. Implicit in our move to the co-moving frame is an 

emphasis on those solutions that have stationary aspects. It will turn out that we have imposed the 

condition that there is a time-like isometry vector, which means we have the analogs of gravity and 

gravitomagnetism. 

For the reader with some knowledge of theories of this type, we acknowledge that we are by no 

means the first to study Einstein type equations. We agree with the accumulated and accepted wisdom 
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that the study of the field equations Eq. (3.1) is a large project that may take considerable effort and time 

to flesh out. Much work has been done already. However, our applications are different from those in 

physics and so the program that has been carried out in that domain is not entirely applicable here. Indeed 

without some analysis such as we suggest here, it is not clear what aspects can be usefully carried over. 

It is important therefore to specify a program in our domain that identifies what is relatively simple 

from what is relatively complex. We start that project. Our goal is to at least get to the point that we can 

that it is possible to have a complete dynamical numerical solution for problems in which there are any 

number of strategies and any number of players. We should be able to carry out this program for one, two, 

three or four active strategies. As numerical techniques improve, it should be possible to extend to a 

larger number of strategies: such approaches have been used in other fields of study.  

4.1.1 Player Fixed Frame Model—dynamic components 

The key idea behind the player fixed frame model from section 3.8 is that in the co-moving frame of 

reference, the active strategy variables are exact, which imposes dynamic constraints. We made additional 

dynamic assumptions Eq. (3.50) to those of exactness, Eq. (3.46) and (3.49). We did not motivate those 

assumptions, a task we take up here: 

 

0

0

0

q
α

αβυ αβ αβγ

αβ αβ

ω θ ω

φ ω

=

= = =

= − =

 (4.1).  

The first equation makes the plausible statement that the energy flow has no acceleration along the 

proper-inactive directions. The player exercises some persistency in his or her decision process.  

In the second and third set of equations the interpretation is that the co-moving frame has a fixed 

orientation with respect to the players and that the only compression will be along the active strategy 

directions and will be captured by υαβω . In particular, all compression or expansion coefficients such as 

αβθ  and the symmetric part of αβγ αγβω ω=  are zero. Along the flow direction, the frame rotation αβφ  is 

zero and so the Fermi derivative of the frame rotation also vanishes in Eq. (3.44). 

Though we explore the distinctions that arise from these concepts in more detail in section 4.4, here 

we give some initial insights here about additional frame rotations. First, we extend the notion of the 

Fermi derivative Eq. (3.45), which was defined relative to the flow and provided physical insight into the 

rotational behavior of the frame along the flow. We take the directions to be along the orthonormal 

directions and below, indicate with the Greek letter α  both the component index and the scalar variable. 

In this paragraph, we temporarily suspend our notation from the last chapter and allow this Greek letter to 

represent both proper-active and proper-inactive strategies: 
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 (4.2) 

We express these Fermi derivatives of the orthonormal vector fields { },E Eµα µυ , using the expansions Eq. 

(3.41) and (3.43) for the orientation potentials: 
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 (4.3) 

Not only is the Fermi derivative of the flow zero along the direction of motion, it is zero along any of the 

orthonormal coordinates. The Fermi derivative of any frame component along any other frame direction 

is a rotation set by the orientation potential restricted to the transverse space.  
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We return now to our notation from the last chapter and state the consequence of our model 

assumptions Eq. (4.1) for the variation of j
E β : 
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F j

j j
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β γ υ
βγα βυα

β γ υ
βγυ βυ υ

ω ω
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ω ω
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′
′

= − − =
∂

= − − =
∂

 (4.4) 

Based on the player fixed frame model, the orthonormal vectors for the inactive space (the Killing 

vectors) remain fixed when moved along any of the transverse directions. In particular we see the value of 

having 0αβυω =  and 0αβγω = .  

We have already commented about the frame rotation αβφ  being zero along the flow direction. Our 

assumptions amount to the requirement that the frames do not rotate along the flow or along any of the 

transverse orthonormal axes. Our assumptions can be summarized as saying that with this hypothesis, the 

co-moving orthonormal coordinate basis is a player fixed frame model, justifying its name. The 

orientation of the proper player does not change. This class of models enhances the notion of player 

persistency and extends the notion of persistency to be an attribute that applies to the large scale structure. 

We do expect to see some aspects of game theory in our solutions. We will also see significant 

differences. In particular we see strong vorticity effects evidenced in the vorticity tensor components 

υα υυω ω ′ . 

4.1.2 Player fixed frame model—persistent components 

Persistency is a consequence of the Killing equations, Eq. (3.62), which we summarize in Table 4-1. 

These results were derived in the last chapter and provide the essential results for the frame evolutions. 

For further details see section 3.9. In Table 4-1 we provide equations for the transformations that take us 

from the normal-form coordinate basis to the co-moving orthonormal coordinate basis. One of the goals 

is to obtain equations for the transformations from the normal-form coordinate basis to the orthonormal 

coordinate basis.  

It is noteworthy that the inactive Killing vectors { }j j jE E E
ο α υ  are stationary for the player fixed 

proper time through a wave equation, assuming we can define a proper time variable. We see that the 

transformations from active to inactive involve the proper charge eα , which is stationary. The Killing 

conditions provide sufficient gradient equations for each stationary field so that these fields are 

determined, given appropriate initial conditions. 

Table 4-1: player fixed frame model—persistent and dynamic components 

Distinction Variable Properties 

Energy Flow 
a

j

E

E

ο

ο
  

The active flow are not in general stationary and satisfy Eq. (3.57)based on 

the exact character of the active flow and on the wave equation: 

0
ab

a bg E
ο∂ =  

Proper-active strategy 

0

a

j

E

E

υ

υ =
 

The wave equation Eq. (3.57) determines the proper active strategy in 

terms of the harmonic coordinates: 

 
ab

a b
g y qυ υ υβ

βω∂ ∂ = − − .  

Active strategy a

a a

a

E

E e E

E

ο

α α ο

υ

=

 

We have the exactness conditions Eq. (3.60) for a
x  and the harmonic 

gauge condition Eq. (3.71) 

 ( )
( ) ( )

2

2 2

1

a a a a

a a a

a a a

E E q E e E
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e e E E q E
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∆ − ∆ = − −
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+ ∆ = −∆ + +
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Inactive strategy 

Killing vector 

Player potential 

0

j

j

j

j

j

j

E

E

E E

E

E

α

ο

υ υ

ο

α

= =

 

The proper time variations Eq. (3.65)
  

0jEο α∆ =
 

and Eq. (3.68)  

0
j

E ο
ο∆ = , are zero. The gradients  are Eq. (3.67) and (3.64); the Killing 

vectors determine the payoffs Eq. (3.30) using Eq. (3.74): 
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proper charge a a
E e Eα α ο=

 

Orthogonality leads to Eq. (3.54), (3.55), (3.59) and (3.69), showing in 

particular that the proper charge eα  is conserved and the charge gradient 

determined. 

0

2 2
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4.2 Field equations—co-moving orthonormal coordinate basis 

We gain insight about decision processes by working in the co-moving frame. The field equations Eq. 

(3.1) in the co-moving orthonormal coordinate basis are computed using the flux 2-form Eq. (2.27). The 

exercises from the last chapter addressed the technical aspects of this computation for the normal-form 

coordinate basis. In this chapter we outline the steps for the same calculation in the co-moving basis.  

Our approach will be to take the expression for the orientation flux in term of the potentials and 

expand them. We provide a guide for all the time evolution equations in Table 4-2. We list all the space 

evolution equations in Table 4-3. The calculations in this section are for any model. In the next section we 

specialize to the player fixed frame model. By working through the calculations here and in the next 

section, along with the corresponding exercises at the end of the chapter, the reader will gain a deeper 

understanding of the field equations and their consequences. In section 4.4, these results will be applied to 

the identification of distinctions in the player fixed frame model. 

In this section, we find it convenient to use more compact expressions, so we restrict Greek letters to 

not be along the flow: , , ,α β γ ο≠� . We start with the defining relationships for the orientation flux Eq. 

(2.27): 
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For the appropriate orientation potentials we use Eq. (3.41) and (3.43): 
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 (4.6) 

The orientation potential 1-forms that result from these definitions are: 
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Note the suggestive notation = ο
V E  for the flow 1-form. To obtain the differentials of the orientation 

potentials we use the differentials of the frames based on the condition of no torsion Eq. (1.54): 
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We have sufficient information to compute the curvature components in Eq. (3.1). We take the mixed 

components in Eq. (4.7) and compute in exercise 7 the curvature components Rαοβγ  and Rαοοβ , Eq. 

(4.115). From these curvature tensors, we obtain a variety of results that are detailed in the subsections 

that follow. 

4.2.1  Time evolution of vorticity and expansion 

Based on the symmetry condition R Rαοοβ βοοα= , Eq. (2.70), we get our first result, the time evolution 

of the vorticity: 

 ( )1
2 || ||q q

γ γ γ γ
ο αβ α β β α α βγ αγ β αγ β αγ βω θ ω ω θ φ ω ω φ∆ = − + − + −  (4.9) 

The double bar notation for the components of the covariant derivative is a short hand for the terms that 

involve only the transverse components: 

 | || ||q q q q q q qγ ο ο
α β β α αβ γ αβ ο α β αβ ο α βω ω ω= ∆ − − = − =  (4.10) 

In other words, this is the covariant derivative defined on the hypersurface orthogonal to the proper time 

coordinate. It makes some of the intermediate algebra simpler, though in this case it makes no difference.  

Next, we look at the symmetric curvature tensor Rαοοβ component Eq. (4.115), called the tidal force 

by (Hawking & Ellis, 1973), which determines the time evolution of the expansion that appears in the 

literature: 

 ( )1
2 | |R q q q q

γ γ γ γ
ο αβ αγ β αγ β αοοβ α β α β β α αγ β βγ αθ θ θ ω ω φ θ φ θ∆ = − − + − + + + +  (4.11) 

We have used Eq. (4.9) to eliminate the time dependence of the vorticity. We return to Eq. (4.11) later, 

though we note that this is a useful result in its own right. 

We obtain a field equation by contracting the tidal force using Eq. (2.74) with n  space components 

that total the number of active and inactive strategies. We obtain an expression in which only the energy 

density and average pressure appears: 
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κ µ

− 
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 (4.12). 

We combine this equation with the time evolution of the expansion to get the evolution of the volume 

compression coefficient m
αβ

αβθ θ= : 
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αα α β β α β
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θ θ θ ω ω φ θ κ µ

− 
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 (4.13) 

This formula in the ( )3 1+ dimensions of physical space and time is attributed to Landau and 

Raychaudhuri by (Hawking & Ellis, 1973). 

4.2.2 Codacci equations 

Not all equations that we get are time evolution equations. The possibility of field equations being 

independent of time exists with Maxwell’s equations for example: Coulomb’s law provides a set of 

equations that are independent of time, with only spatial partial derivatives. For equations of the Einstein 

type, such relations are named after Codacci. In a space of n  space dimensions and one time dimension, 

there is a theorem that there will be 1n +  Codacci equations. We are able to identify n  of these 

equations. 

The mixed component Rοβ  is pοβκ , which is zero. This contracted curvature tensor is: 
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 R R m R
γ αγ

οβ οβγ αοβγ= =  (4.14) 

We use this with Eq. (4.115) from the exercises at the end of this chapter to obtain the n  Codacci 

equations, (Hawking & Ellis, 1973, p. Eq. 7.17): 

 || || || 2 q
β β β

α β α β α αβθ ω θ ω+ − = −  (4.15) 

These constraints are on the surface orthogonal to the flow and contain no time derivatives. The 

constraints are only spatial partial differential equations that must be satisfied on the surface transverse to 

the time flow. Since there are 1n +  Codacci relationships, we need to find one more. 

4.2.3 Remaining equations 

The remaining set of equations (line 3 and 5 of Table 4-2) are computed from the transverse 

components of the orientation potential 1-forms 
α

βω , Eq. (4.7). From exercise 8 at the end of the chapter, 

the differential 1-form Eq. (4.116) contains no proper time partial derivatives of the frame rotation αβφ , 

suggesting that it is set to zero only by the Codacci constraints, or by our assumption of the player fixed 

frame model. However, it does not appear in the Codacci constraints Eq. (4.15), suggesting that there are 

not time evolution equations for the frame rotations αβφ . We don’t expect evolution equations for qα  or 

αβφ , since their proper time derivatives don’t occur in the curvature tensor components, though we may 

expect contributions from q e qβ υ β ο υ∆ = ∆ . 

We do obtain proper time differential equations for the transverse orientation potentials αβγω , Eq. 

(4.119) in exercise 11 as a result of the symmetry relations R Rαβογ γοβα=  based on the computation of the 

curvature components Eq. (4.118). We have computed the time evolution of the vorticity, Eq. (4.9) and 

the time evolution of the transverse orientation potentials αβγω , Eq. (4.119). We have yet to compute the 

evolution equations for the expansion parameters αβθ  in order to have a complete set of evolution 

equations of the orientation potentials expressed in terms of the other potentials and the sources. 

We obtain the complete equation for the expansion parameters by starting with the contracted 

curvature tensor in terms of the sources, Eq. (2.74): 
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The result is based on the expression for the curvature tensor Eq. (4.115) and (4.118) 
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(4.17) 

The essential point is that these equations determine the time evolution of the expansion parameters 

entirely in terms of the sources and the orientation potentials and their derivatives along directions in the 

surface normal to the flow. 

4.2.4 Summary and final Codacci equation 

In summary, the complete set of evolution equations for the orientation potentials is: 
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(4.18) 

These are Einstein’s field equations. Exercise 16 demonstrates that the last two equations are consistent, 

using Eq. (4.123). As a consequence we identify the remaining Codacci relation: 
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αγα α β β α β αβ γ α βγ
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This equation shows explicitly that the energy density is the source of curvature since a non-zero value of 

the energy density requires non-zero values of at least some of the orientation potentials. 

The exposition of the theory is complete in the co-moving orthonormal coordinate basis. We make 

the following observations, summarized in the table below for a space time of dimension 1D n= + . 

Table 4-2: Time Equations 

Determination Source Number in dimension D Number in dimension 4 

qα  
Flow equation 1D −  3 

αβφ  Gauge choice (e.g. exactness) ( )( )1
2 1 2D D− −  

3 

ο αβθ∆  Field Eq. (4.17) ( )1
2 1D D −  

6 

ο αβω∆  Symmetry R Rαοοβ βοοα=  Eq. (4.9) ( )( )1
2 1 2D D− −  

3 

ο αβγω∆  Symmetry R Rαβογ γοβα=  Eq. (4.119) ( ) ( )
2

1
2 1 2D D− −  

9 

Total equations Orientation potentials ( )21
2 1D D −  

24 

 

The other set of relationships are constraints, partial differential equations on the surface orthogonal to the 

direction of proper time and are listed below, Table 4-3. Structurally, the curvature tensor is 

antisymmetric in the first two indices and the last two indices, so the total number of components is 

( )
221

4 1D D − . The number of independent components is further reduced by the symmetry properties. 

The number of symmetry equations is ( )( )21
8 1 2D D D− − , plus the Bianchi identities, 

( )( )( )1
24 1 2 3D D D D− − − , which total ( )( )21

6 1 2D D D− − . The net number of independent 

components is ( )2 21
12 1D D −  (Cf. section 2.9, exercise 13).  

The total number of field equations is ( )1
2 1D D + . Of these, the time equations, Table 4-1, determine 

the compression matrix and the gradient equations, Table 4-2, determine the Codacci equations. In the co-

moving orthonormal frame, the field equations are not sufficient to determine the orientation 

(acceleration) potentials; however they are the only equations that depend on the inertial properties. In 

this frame we need the symmetry equations to determine the time evolution of the remaining orientation 

potentials.  
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Table 4-3: Gradient Equations on Surface normal to flow 

Determination Source Number for D dimensions Number for 4 

dimensions 
µ  Field Eq. (4.19) 1 1 

0Rοβ =  Field Eq. (4.15) 1D −  3 

R Rαβγδ γδαβ=  Symmetry Eq. 

(4.121) 
( )( )( )1

8 1 2 3D D D D− − −  
3 

0R R Rαβγδ αδβγ αγδβ+ + =  Bianchi identity16 

Eq. (4.124) 
( )( )( )( )1

24 1 2 3 4D D D D− − − −  
0 

0R R Rοαβγ ογαβ οβγα+ + =   Bianchi identity17 

Eq. (4.124) 
( )( )( )1

6 1 2 3D D D− − −   
1 

Total spatial equations Gradient equations  8 

 

4.2.5 Conservation laws 

We end this section with the conservation laws Eq. (2.42) in the co-moving orthonormal frame. These 

conservation laws are imposed on the sources because of the field equations, see the exercise 16 in section 

2.9, Eq. (2.75). We have both a transverse and longitudinal part: 

 

( ) |

| | 0

m p q h p h

d
V V p

d

αβ αβ α βγ δ
β β δ γ

α αβ
α α β

µ

µ
µ

τ

+ =

+ + =
 (4.20) 

Transformed to the co-moving frame the first conservation law has no components along the flow 

direction: The acceleration is purely transverse, V qα α=� . The transverse conservation law along with the 

longitudinal conservation law can be written as (exercise 17): 

 ( )
, ,

0

m p q p p p

p

α α β αβ α βγ γ αβ
β β β βγ βγ

αβ
ο αβ

α β γ ο

µ ω ω

µ θµ θ

≠

+ = ∆ + +

∆ + + =

 (4.21) 

The first equation is algebraic and linear for q
β

 in which all the indices are transverse to the flow. 

4.3 Field equations—player fixed frame model 

To fully articulate the consequences of the player fixed frame model, we apply all of the equations 

identified in section 4.2 and summarized in Table 4-2 and Table 4-3. We must in fact verify that the 

model assumptions are self-consistent as well as show that the equations have solutions. We do that in 

this section. These calculations provide deeper insight into our model assumption as well as further 

insight into the general theory. If questions arise about these results, their origins will be clear and subject 

to verification and challenge. 

The results are summarized in Table 4-5 and Table 4-6. We provide exercises at the end of the 

chapter as guides for these results. Equally important are the distinctions about decisions that are the 

outcome of these calculations, which we apply to the orientation potentials. We discuss the distinctions in 

the next section. In this section, we revert to the notation in which Greek letters at the beginning of the 

alphabet , , ,α β γ �  represent proper inactive strategies and the Greek letter upsilon, , , ,υ υ υ′ ′′�   along 

with primes represent the proper active strategies.  

                                                      
16

See (Gockeler & Schucker, 1987) and Cf. section 4.8, exercise 19. 
17

See (Gockeler & Schucker, 1987) and Cf. section 4.8, exercise 19. 



The Dynamics of Decision Processes 

 

85 

 

4.3.1 Expansion equations 

We start with the first set of equations in Table 4-2, the field equations Eq. (4.17) for 

{ }υυ αβ υαθ θ θ′ , the expansion coefficients. Based on the model assumptions, the expansion coefficients 

are zero in both the active and inactive space, but not necessarily the mixed. The time variations for the 

first two must be set to zero in Eq. (4.17) based on these model assumptions: 

 
0

0

ο υυ

ο αβ

θ

θ

′∆ =

∆ =
 (4.22) 

When both components are both active, the first equation simplifies to:  

 

1 1 1 1
2 2 2 2

12 2 2

, , ,

q q q q p
p ph h

n

γ γ
υ υ υ υ υ υ γ υ υγ υ υ

υυ υυ υυα υ υ α α β
υα υ υ υ υ αυ υ υ υβ υ α

ω ω µ
κ

φ φ ω ω ω ω ω ω

α β ο υ

′ ′ ′ ′ ′

′ ′ ′′′ ′′
′ ′ ′′ ′ ′′ ′

 − ∆ − ∆ − ∆ − ∆ + − 
  = − +   −+ + + +   

≠�

 (4.23) 

This equation provides a partial differential equation for the acceleration of energy at each point in proper 

time. 

When both components are inactive, the resultant Eq. (4.17) is a divergence condition for 
υ

υ αβω∆ : 

 2 2
1

p
q p ph h

n

υ υ γ υ υ υ υ υ
υ αβ αβ υ υγ αβ υα β υα β αυ βυ αβ αβ αβ

µ
ω ω ω ω θ θ ω ω ω ω κ′

′

− 
∆ = + − + + − − + 

− 
(4.24) 

In general the divergence is not sufficient to determine the potentials.  

4.3.2 Six symmetry classes 

To determine the potentials 
υ

αβω  we need the consistency equation R Rαβυυ υυ αβ′ ′=  from Table 4-3 in 

which two components are active and two inactive, Eq. (4.120), which simplifies to: 

 2 2 2 2 0e e
γ γ

α ο βυυ β ο αυυ υαγ υ β υβγ υ α υα υ β υα υ β υ α υβ υ α υβω ω ω ω ω ω ω θ θ ω ω θ θ ω′ ′ ′ ′ ′ ′ ′ ′∆ − ∆ + − + + − − = (4.25) 

This will pose an interesting constraint on models as it involves the commutator of the strategic 

compression/rotation matrices. In addition there is a second consistency equation R Rαυδυ δυ αυ′ ′=  that 

follows from Eq. (4.120), which again after simplification is: 

 2 2 2 2 0e eα ο βυυ β ο αυυ υ υ βα υ υαβ υ α υβ υ α υβ υα υ β υ β υαω ω ω ω ω θ θ ω θ ω θ ω′ ′ ′ ′ ′ ′ ′ ′∆ + ∆ − ∆ + ∆ − + − + = (4.26) 

These two equations combine to form a single equation, which gives back each equation when extracting 

the symmetric and antisymmetric part in ,α β : 

 2 4 4e
γ γ

α ο βυυ υ υ βα υ υαβ υαγ υ β υβγ υ α υα υ β υ α υβω ω ω ω ω ω ω ω θ ω θ′ ′ ′ ′ ′ ′ ′∆ = ∆ − ∆ − + − +  (4.27) 

If the time dependence is zero this equation determines the “curl” of υαβω . In general the divergence and 

curl are sufficient to determine the potentials (see exercise 18). The additional constraint on the matrices 

emphasizes that these potentials are matrices in the inactive space. 

The results of the symmetries Eq. (4.120) from Table 4-3 were helpful in providing equations that 

determine the orientation potentials. We should consider all such relations. There are six classes of 

consistency equations involving active and inactive indices that follow from these symmetries:  

 

R R

R R

R R

R R

R R

R R

αβυυ υυ αβ

αυδυ δυ αυ

αβδγ δγαβ

αβδυ δυαβ

αυυ υ υ υ αυ

υυ υ υ υ υ υυ

′ ′

′ ′

′ ′′ ′ ′′

′ ′′ ′′′ ′′ ′′′ ′

=

=

=

=

=

=

 (4.28) 
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We have covered the first two. The third and sixth are identically satisfied in the player fixed frame 

model. The fourth is: 

 e eα ο υδβ β ο υδαω ω∆ = ∆  (4.29) 

The fifth gives the “curl” of the payoff in the co-moving basis, after the usual simplifications: 

 

2

2 0

2

β
υ αυ υ υα υ υ αυβ υ υ

β
υ αυυ υ α υυ αυ β υυ

β
υ αυ υ υ α υ υ αυ β υ υ

ω θ ω ω ω

ω θ ω ω ω

ω θ ω ω ω

′ ′′ ′ ′′ ′ ′′

′′ ′ ′′ ′ ′′ ′

′ ′′ ′ ′′ ′ ′′

 +∆ − −
 

+∆ − − = 
 
 +∆ − − 

 (4.30) 

This “curl” is analogous to n magnetic monopoles in Eq. (1.20) expressed in covariant notation. In the 

holonomic frame, these conditions imply that the payoff field can be written in terms of a potential, Eq. 

(1.21). 

4.3.3 Time evolution of the “mixed” expansion coefficient 

To complete analysis of the time evolutions Eq. (4.17) for the player fixed frame model, we write the 

result, after simplifications, for the expansion coefficient υαθ , which in general provides the time 

evolution: 

 
1 1 1

2 2 2

2q
p

e q e e

υ υ υ υ β β υ
ο αυ υ αυ αυυ α υυ αβ υυ υ β αυ

αυβ β
α ο υ α ο υβ β ο υα

θ ω ω ω ω ω ω ω ω
κ

ω ω

′ ′ ′ ′ ′
′ ′ ′ ′ ′ ∆ − ∆ + − + +

  =
 − ∆ − ∆ + ∆ 

 (4.31) 

If we think of the potential αυυω  as the payoff matrix for a proper-player α  in the co-moving frame, it is 

analogous to the magnetic field in Maxwell’s equations, Eq. (1.19). We can view Eq. (4.31) as the analog 

of Ampère’s law suggesting that the expansion coefficient υαθ  is analogous to the electric field and its 

contribution in Eq. (4.31) is the analog of the displacement current in electrical engineering
18

.  We then 

view p
υ

ακ  as the current along the strategic direction υ  for proper-player α . We shall firm up these 

distinctions in the next section. 

4.3.4 Codacci equations 

We tackle item two next in Table 4-3, which provide the consequences of the field equations that 

result from 0Rοβ =   that we have named the Codacci equations, Eq. (4.15). After simplification, in the 

player fixed frame model, the proper inactive components give the divergence of the mixed sum of 

expansion and vorticity components:  

 ( ) ( ) ( )2 qυ υ υυ υ υ β β υβ
υ α α αυυ υα αβ υ υ β υα υαθ ω ω ω ω ω θ ω ω θ ω′

′∆ + = + + − + +  (4.32) 

The active component gives the divergence of the active vorticity components: 

 ( ) ( )2 2q eυ υ α υ υ α α
υ υ υυ α α υυ ο υα υαω ω ω θ ω θ ω′ ′ ′ ′

′ ′ ′∆ = − + + − ∆ −  (4.33) 

We have a total of n  such relations including both the active and inactive components. The inactive set 

Eq. (4.32) consists of terms reminiscent of Coulomb’s law Eq. (1.14), though we are missing the charge 

and have the extra divergence 
υ

υ αω∆ . 

To complete the items in Table 4-3 we need only do the first element Eq. (4.19), which after model 

simplification gives the energy density in terms of the potentials: 

 
3

2

1 1 1
2 2 2

3 2
υυα α υ α υ α υ υ

υ α υ α υ α υ α υ υ

υυ α υα β α υβ
α υυ β υα υα β

ω θ θ ω ω θ ω ω ω
κµ

ω ω ω ω ω ω

′
′

′
′

 −∆ − + + +
=  
 + + + 

 (4.34) 

                                                      
18

 Electric and magnetic fields depend on the frame of reference. Our terminology in this section is specific to the 

co-moving frame of reference.  
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We already have an expression for the divergence, Eq. (4.24), so an alternate expression is one in which 

the partial derivatives are absent: 

 

3 3 1 1
2 2 2 2

2
1 0

p
p ph h

n

q

α α α α υ υ α υα
α α α υ α α υ υα

υυβ υ α υυ υα β α υβ
β υ υ υ υυ α β υα υα β

µ
κ µ θ θ θ ω ω ω

ω ω ω ω ω ω ω ω ω′ ′
′ ′

 − 
− − + + + +  

−  = 
 − + + + − 

 (4.35) 

We have an algebraic set of relations between the energy density and diagonal stress components with the 

orientation potentials. This completes the analysis of the items in Table 4-3. 

4.3.5 Vorticity equations 

We turn to row four of the time evolutions, Table 4-2, which gives the time evolution of the vorticity 

components, Eq. (4.9) that result from the symmetry R Rαοοβ βοοα= . We write out these conditions for the 

various cases, { }υυ υα αβω ω ω′ , starting with the first case that both indices are active. After 

simplification the result for the player fixed frame model is: 

 ( )1
2 2 2q q α α

ο υυ υ υ υ υ υ υ α υα υω θ ω ω θ′ ′ ′ ′ ′∆ = ∆ − ∆ + −  (4.36) 

The second case is the vorticity with mixed components, whose simplified expression is: 

 1
2 e qο υα α ο υω∆ = ∆  (4.37) 

The third case gives the time evolution for the inactive components, which after simplification is: 

 0ο αβω∆ =  (4.38) 

We set these vorticity components to zero on the initial hypersurface and this shows that they remain zero 

at all later proper times along an appropriate path. 

4.3.6 Remaining potentials and their evolution 

The last orientation potentials to analyze from Table 4-2 are the time evolutions of the last row. There 

are six cases to consider:  

 υαβ αυυ υυ υ αβυ αβγ υυ αω ω ω ω ω ω′ ′ ′′ ′  (4.39) 

We start with the first case υαβω  and simplify Eq. (4.119) using the model assumptions: 

 ( ) ( ) ( )e e
υ υ

ο υαβ α ο υβ υβ β ο υα υα υυ αβ βαω θ ω θ ω ω ω ω′ ′
′∆ = ∆ − + ∆ + − −  (4.40) 

In the model, we have the symmetry υαβ υβαω ω= . The antisymmetric part of this equation is: 

 ( ) ( )2 υ υ
ο υαβ υβα υυ αβ βαω ω ω ω ω′ ′

′∆ − = − −  (4.41) 

If this starts at zero it stays at zero over time. The symmetric part of Eq. (4.40) is: 

 e eο υαβ α ο υβ β ο υαω θ θ∆ = ∆ + ∆  (4.42) 

This assumes that the antisymmetric part of υαβω  is in fact zero. It then follows from this and Eq. (4.29) 

that: 

 e eα ο υβ β ο υαθ θ∆ = ∆  (4.43) 

This allows for a simplification of the analog of Ampère’s Law, Eq. (4.31): 

 1
22q e q p

υ υ υ υ β β υ
ο αυ υ αυ αυυ α υυ αβ υυ υ β αυ α ο υ αυθ ω ω ω ω ω ω ω ω κ′ ′ ′ ′ ′

′ ′ ′ ′ ′∆ = ∆ − + − − + ∆ +  (4.44) 

Sticking with the same elements of Table 4-2, we consider the second potential in Eq. (4.39). In the 

model, after simplification it yields: 
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( ) ( )

( ) ( )
( ) ( )

e

q q

α ο υ υ υ υ α υ α υ υα υα

β β β
ο αυυ υ α υβ υβ υαβ υ υ

υ υ α υ α υ υα υα

ω θ ω θ ω

ω ω θ ω ω θ ω

θ ω θ ω

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′

− ∆ + ∆ + − ∆ + 
 

∆ = − − + − 
 
 − − + − 

 (4.45) 

The equations are antisymmetric in the active indices demonstrating consistency with the model 

assumptions Eq. (3.49).  

The third case in Eq. (4.39) with all three indices active yields a non-zero time evolution, which after 

model simplification is set to zero based on the exactness constraints Eq. (3.49):  

 

2

2 0

2

q

q

q

α
υ υ υ υα υ υ υ υ υ

α
ο υυ υ υ υ υ υ α υ υ υ υ υ

α
υ υυ υ α υυ υ υυ

ω ω ω ω

ω ω ω ω ω

ω ω ω ω

′ ′′ ′ ′′ ′ ′′

′ ′′ ′ ′′ ′ ′′ ′ ′′

′′ ′ ′′ ′ ′′ ′

 +∆ − +
 

∆ = +∆ − + = 
 

+∆ − + 

 (4.46) 

We obtain a set of “curl” equations for the vorticity potentials υυω ′ . 

The fourth case, αβυω  in Eq. (4.39), simplifies to: 

 0e e e eο αβυ α ο υβ β ο αυ α ο υβ β ο υαω θ θ ω ω∆ = − ∆ + ∆ − ∆ + ∆ =  (4.47) 

It is identically zero (i.e. no new constraint) using Eq. (4.43) and (4.37). The fifth term αβγω  computes to 

an identically zero time evolution: 

 0ο αβγω∆ =  (4.48) 

The sixth term υυ αω ′  we compare with the time evolution of υαυ αυυω ω′ ′= −  Eq. (4.45) and take the 

difference, since the two are equal by the constraint Eq. (3.49). We make simplifications, obtaining the 

result: 

 2 0
e q

q

β
α ο υυ υ υ α υ υ α υβ υ α

ο υυ α ο υαυ β
υ υα υ υα υ β υα

ω ω ω ω ω
ω ω

ω ω ω ω

′ ′ ′ ′

′ ′

′ ′ ′

 ∆ + ∆ + +
 ∆ − ∆ = =
 −∆ − − 

 (4.49) 

In this case the result is not automatically zero, so that we obtain the “curl” equation for υαω . Coupling 

this equation with the time variation Eq. (4.45), we achieve the following simpler expression: 

 q q
β β

ο αυυ υ υ α υ υα υ υα υ υ α υα υ β υ α υβω θ θ θ θ ω θ ω θ′ ′ ′ ′ ′ ′ ′∆ = ∆ − ∆ + − + −  (4.50) 

Comparing this with Maxwell’s equations Eq. (1.14), these equations are the generalization of Faraday’s 

Law to decision theory. 

4.3.7 Conservation laws 

We have now computed all of the items in Table 4-2; we have not explicitly checked Eq. (2.71), but 

leave to an exercise to check that they are satisfied. The remaining equations result from the conservation 

laws on the inertial sources, Eq. (4.21). The longitudinal conservation law in Eq. (4.21) simplifies for the 

player fixed frame model: 

 2 p
υβ

ο υβµ θ∆ = −  (4.51) 

In addition, there are two transverse conservation laws to consider, one for accelerations along α   and 

the other along υ . After simplification the first of these is: 

 p p q e p p p
υα υα αβ α υβ β υα

υ υ β ο υβ υβω ω∆ = − ∆ + +  (4.52) 

The second is: 

 2p q p q p p p e p
υυ υ υυ α υυ υ αβ υ υ α υα

υ υ υ α αβ αυ α οµ ω ω ω′ ′ ′ ′
′ ′ ′ ′∆ = + + − − − ∆  (4.53) 

These are the differential equations for the stress components.  
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4.4 Player fixed frame model—distinctions 

The results from the last section are summarized in the three tables, Table 4-4, Table 4-5 and Table 

4-6 in this section. We discuss the distinctions that arise from these results. In thinking about the results 

from the previous sections, it is tempting to base distinctions solely on concepts that arise in game theory, 

economics or other decision processes. In engineering however we are familiar with the problem. There 

are many types of engineering problems in each of the engineering disciplines. Historically, there were 

specialized distinctions associated with each particular application. The power of the engineering 

discipline and the scientific principle in general is to see the underlying connections that span multiple 

applications. Thus engineering terminology is often based on the terminology of the underlying physical 

laws, which are abstract and mathematically based. This makes the concepts somewhat more objective.  

We see some advantage for decision theory to adopt the same stance and rely more on the physics 

nomenclature than application specific distinctions. We see an advantage with distinctions that are more 

neutral as they help provide the common ground for discussion. However, we balance this stance with the 

understanding that there is an advantage to use names that appear to apply to the subject matter as they 

make the arguments clearer. Thus we feel justified that in introducing decision theory, we relied on 

foundational aspects of game theory, section 1.1. We believe it useful to discuss effects with examples, 

where we propose how our theory applies. In general, we indicate by bold italics distinctions that follow 

directly from our theoretical foundation and that should be generally applicable.  

We start our discussion of the results of the sections 4.1 and 4.3 based on these caveats. We find that 

there are four classes of forces that determine decisions: electric forces, magnetic forces, tidal forces and 

stress or inertial forces due to external sources. In the co-moving frame we are able to isolate the global 

characteristics of these four classes. 

These four forces contribute to the change in flow through the transverse conservation of energy and 

momentum, Eq. (2.42). We recall the form of this with no inertial effects, Eq.  (1.75): 

 1
2 0

b
b c k b j k

ab abc k ab a jk

dV
g V V V F V V V

d
ϖ γ

τ
+ − − ∂ =  (4.54) 

This shows that the acceleration (the first term) is determined by the active orientation potentials 
abcϖ , 

the electromagnetic forces 
k b

k abV F V  and additional forces due to the charges and the gradient of the 

inactive metric. It is worth noting that this latter term can be written as 

 ( ) ( )( )
( )

2
1

2 2
2

1

j k a

a jk

E
V V q e e e e e e e

e e

υ
α α α β α β

υ α υ υ α β υαβ
α

α

γ ω θ ω− ∂ = − + +
+

 (4.55) 

This shows how the co-moving frame orientation potentials contribute to the acceleration. To these 

effects we add the inertial fields. 

4.4.1 Distinctions—persistency 

The origin of persistency is the local group invariance of a commutative group of isometries and 

leads to the concept of a player in our decision process theory. A possible global concept is based on the 

idea that the transformation from the normal-form coordinate basis to the co-moving basis doesn’t rotate 

the axes that correspond to the players. This is made explicit in the player fixed frame model from section 

3.8. We provide a concept that is a global property, corresponding to real world behaviors. This notion of 

player transcends the transactions over time. As players make choices and change their decisions, we are 

still able to distinguish different players. Yet players may change their payoff matrix and change the 

frequencies with which they pick strategies. The player fixed frame model provides a mathematical basis 

for this type of view. It is a model or approximation that the general decision process theory does not 

require. We investigate this model and see what consequences it has and whether reality conforms to this 

view. So this model is an inquiry into a particular form of persistency that is a global property rather than 

just a local property. The consequences of these ideas are summarized in Table 4-1 in which we identify 

four key distinctions: 
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1. Energy flow 

2. Active strategy and proper active strategy 

3. Inactive strategy, proper inactive strategy, Killing vector and player potential vector field 

4. Charge, proper charge, charge gradient 

We discuss each of these distinctions in turn. 

We defined a formal unit vector field = ο
V E  to be the direction along which the energy of the 

system flows at each point. The energy flow is an important attribute of any physical system. What is the 

meaning of energy and energy flow for decisions? For decision processes we identified in section 1.1 the 

energy flow direction as characterizing the strategy chosen: the relative frequencies of the flow are the 

relative frequencies with which the players collectively make their choice.  

We now identify additional attributes that are associated with the flow of energy. In game theory and 

many economic theories, decisions are transactions in which something of value is exchanged. Game 

theory for example rests on the idea of a utility that each player gives or receives in a transaction, 

summarized by the payoff matrix of values. In our decision process theory, we exchange energy. How 

that occurs depends on the nature of the forces and is dictated by the principle of least action (Cf. section 

2.4).  

Energy is convertible and described for all forces by their contribution to the energy momentum 

tensor.  Because we assume the foundational aspects of game theory, our notion of energy and the game 

theory notion of utility are consistent. We start with the same notion of a payoff matrix including a notion 

of some initial game value. The payoff field contributes to the energy momentum field so the specified 

payoff values also specify the initial energy and momentum of the system. 

The basic attributes of and equations for persistency in the player fixed frame model are specified in 

Table 4-1. The energy flow consists of the active strategy components aE
ο

that reflect the strategic 

frequency choices. In the co-moving frame the proper active strategy components are along the υ  axes. 

We distinguish the inactive strategy flow components jE
ο

 as those that reflect the basic coupling of the 

player to the decision process. We also call these basic components the charge of player j . The 

projection of the charge onto the co-moving direction α  we call the proper charge of player α . In the 

co-moving frame the proper inactive strategy components are along the α  axes. We see from Table 4-1 

that the projection is j jE E e
ο α

α= − , so it makes sense to call eα  the proper charge of α .  

We made the formal distinction that inactive strategies correspond to isometry transformations and 

hence provide the theoretical foundation for what we mean by a player. We made this notion covariant by 

noting that the necessary and sufficient condition for an isometry transformation is the existence of a 

Killing vector field. We identify the various components of this field as j j jE E Eο α υ  in the co-moving 

basis. Based on the relations that must be satisfied in general for such vectors, we obtain the equations in 

Table 4-1. 

Our notion of a player and the underlying isometry mechanism was introduced to create the payoff 

field 
j

abF . The results in Table 4-1 show that the linear combinations of the Killing vectors 
j j j

E E Eο α υ  are the player potential vector fields that define the payoffs Eq. (3.30): 

 
| |

,

j j j j a b

abf E E F E Eαβ β α α β α β

α β ο≠

= − =
 (4.56) 

Thus the equations that determine the transformations of the inactive flows also determine the persistency 

and payoff properties of the theory. In the co-moving basis, the payoffs are specified by orientation 

potentials in Table 4-1. 

Below, we identify the payoffs with the electric and magnetic forces. With that identification, the 

charge or proper charge for a given player is then the strength of the coupling of sources to the field for 

that player in the normal-form or co-moving coordinate basis respectively. There will be an additional 

coupling specified by the player current (section 4.4.4). There is no correspondence of these notions in 



The Dynamics of Decision Processes 

 

91 

 

game theory since two payoffs that differ by an overall constant factor have the same strategic behaviors. 

We do note however that the idea of engagement is an important concept in the real world. In a game 

such as poker or a real world situation such as a world war, the size of the stakes impacts how people play 

the game. So we might think of charge in practical applications as engagement. 

4.4.2 Distinctions—electromagnetic fields  

The compelling reason to identify the payoffs with the electromagnetic field is the form of the 

equations: either Eq. (3.16) in the normal-form coordinate basis or Table 4-4 in the co-moving coordinate 

basis. The results in the co-moving basis are striking. Comparing these equations with Maxwell’s Eq. 

(1.14), we identify the electric field  for player α  with υαθ  and the magnetic field for player α  with 

αυυω ′ . Though striking, the equations are not exactly the same. The Maxwell-type equations for decision 

theory contain corrections due to tidal forces discussed below and reflect the existence of multiple 

independent player fields.  

These equations as well as all the other equations that we obtain in this theory are of three general 

types that we characterize as follows:  

1. Time evolution equations: for example we have ο υαθ∆  on the left-hand-side of the equation and only 

field values or the spatial derivatives on the right-hand-side. 

2. Divergence equations: The spatial derivative is contracted with the tensor on the left-hand-side of the 

equation, for example 
υ

υ αθ∆  and on the right-hand-side there are only fields or other divergences if 

they have not been specified in the theory. 

3. Curl equations: for vector fields we will have antisymmetric tensor combinations on the left-hand-

side such as υ υ α υ υαθ θ′ ′∆ − ∆  and on the left only fields (or in this case time derivatives). For two 

dimensional tensor fields such as αυυω ′  there will be an equation that determines the totally 

antisymmetric cyclic combination υ αυ υ υ αυυ υ αυ υω ω ω′ ′′ ′′ ′ ′ ′′∆ + ∆ + ∆ . 

Table 4-4: Player fixed frame model—electromagnetic fields 

Distinction Variable Properties 

Electric field 
υαθ  Ampère’s law Eq. (1.19) is generalized by Eq. (4.44), which gives the time 

evolution. Eq. (4.32) and (4.43) provide the generalization of Coulomb’s 

law: 
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Magnetic field 
αυυω ′  

Eq. (4.30) gives the “curl” of the co-moving magnetic field. The time 

evolution is Eq. (4.50) generalizes Faraday’s law Eq. (1.14): 
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By analogy with electro-dynamic equations, we expect that if the form matches Maxwell’s equations 

there will be well defined solutions. Typically one needs both the divergence and curl equations as well 

as, or in combination with, a time evolution equation. That obtains here. 

The concepts of electric and magnetic fields are precise; we expect that the consequence of the 

equations to be as rich and complex as those in the field of electrical engineering. One can skim any text 

book to see the diversity of effects that such equations generate. For example, see the classic text on 
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electro-dynamics (Jackson, 1963). The question is whether these consequences accurately describe the 

effects of decision making. Decisions are often framed in more colorful language. Because of the origins 

of the distinction payoffs from game theory, we anticipate that the magnetic field reflects self-interest 

behaviors, egotism, competition and conflict. We recall the use of electric field components in converting 

a game into normal form, for example using time as the hedge strategy in Eq. (1.12). Based on this, we 

anticipate that the electric field reflects altruism, bias and persuasion. Democratic institutions argue the 

need for strong self-interests working together to find the common good. Autocratic institutions 

demonstrate the power of coercion to create conformity and agreement. We see that the electric and 

magnetic forces fuel these opposite extremes. Rather than argue in favor of any of these positions, our 

decision process theory makes visible the specific mechanisms indicated in Table 4-4, which provide a 

more precise set of distinctions than used in the popular press. 

4.4.3 Distinctions—tidal fields 

Although the inactive frames don’t rotate along a particular proper strategic direction υ , the size of 

the space can increase or decrease. The measure of this change is the component of the orientation 

potential αβω . As an example, the volume of an element of ordinary space in spherical coordinates is 

2 sinr drd dθ θ φ . Effectively as one increases the radius, the directions of the latitude θ  and longitude φ  

don’t rotate. However the differential volume increases by 
2

r  reflecting the fact that the space is getting 

flatter. We term effects that reflect the curvature of the space tidal. Generically the orientation potentials 

in the co-moving frame can be distinguished as spin or strain depending on whether potentials are anti-

symmetric, for example υαβ υβαω ω= − or symmetric, for example υαβ υβαω ω= , respectively. For these 

examples, the spin components are assumed to be zero in the player fixed frame model. These symmetric 

tidal bond components have no analogy in Newtonian physics. Strictly speaking, they are not attributes of 

Newtonian gravity since they are tensor forces. They are attributes of Einstein’s general theory of 

relativity and do explain small but measurable effects such as the deviation of Mercury’s path around the 

Sun compared to Newtonian calculations. 

Table 4-5: Player fixed frame model—tidal fields 

Distinction Variable Properties 

Tidal charge gradient 
υαω  “Curl” Eq. (4.49) and time evolution Eq. (4.37), where the time dependence 

of the tidal rotation is determined by Eq. (4.36) 

1
2

q q e

e q

β β
υ υ α υ υα υ υ α υ υα υβ υ α υ β υα α ο υυ

ο υα α ο υ

ω ω ω ω ω ω ω ω ω

ω

′ ′ ′ ′ ′ ′ ′∆ − ∆ = − + − + − ∆

∆ = ∆
 

Tidal bond υ
αβω  Time evolution is Eq. (4.42). The divergence equations Eq.  (4.24). The 

matrix commutator and curl are determined by Eq. (4.27), since the time 

dependence of the magnetic field is determined through Eq. (4.50) by the 

electric field; 
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Tidal magnetic 
υυω ′  Eq. (4.33) gives the divergence, Eq. (4.46) gives the “curl” and Eq. (4.36) 

gives the time evolution. 
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In addition to these strain components, the tidal spin components υαω are not zero in the player fixed 

frame model. Because the gradient of the charge Eq. (3.69) is non-zero whenever these spin components 

are non-zero, we think of these spin components as the tidal charge gradients. They contribute 

contributions to Coulomb’s law Eq. (4.32) as seen also in Table 4-4. The tidal magnetic components υυω ′  

are so named as they contribute to the payoffs Eq. (4.56) in the normal-form coordinate basis since by 

Eq. (3.74): 

 2 2j j j
f E E

α ο
υυ αυυ υυω ω′ ′ ′= −  (4.57) 

The dynamics of the tidal magnetic field differs from αυυω ′  as seen in Table 4-5. For example we see that 

the time variation depends on the curl of the acceleration and distinguishes the electric field from the tidal 

charge gradient. These effects need more detailed study. We may learn more about these dynamics in 

decision processes than what we currently understand from applications in physics. 

What effects do these tidal strains and tidal spins represent in decision processes? We have been able 

to draw little from game theory as these effects would be absent at equilibrium. A preliminary study by 

(Thomas & Kane, 2010) suggests that the charge gradient provides the possibility for players to 

demonstrate interdependent and independent behaviors. We will review that work in the next chapter, 

updating it to conform to the decision process theory outlined here using the player fixed frame model. 

4.4.4 Distinctions—inertial fields 

The orientation potentials describe tidal spins and tidal strains, the orientation flux fields, which 

relate directly to the geometry of the behavior. Our decision process theory provides not only for strains 

but for components such as pυυ ′  of the stress tensor that, along with the energy density and energy flow, 

characterize the energy momentum of inertial fields. The orientation flux fields are key to our decision 

process theory. The effects of frames that change with the orientation flux fields provide the basis for an 

understanding of how energy attracts or interacts with energy. Since we take energy to be more 

fundamental than utility or value, we are in fact hoping to provide a deeper understanding of economic 

value. We see in Table 4-6 that the orientation flux field is directly related to the components pυυ ′  of the 

stress tensor along the active directions. With the physics analogy as a guide, we see that the metric 

components 
00

g  in the time direction will be determined in part by the equations for the transformations 
a

E ο  , which are determined by the exactness conditions Eq. (3.60) and found to depend critically on the 

orientation flux field. This mathematical result produces the physical result of (scalar) gravitational 

attraction that does conform to Newtonian gravity.   

Inertial effects occur not only in the acceleration of the flow of energy, but due to the magnitude of 

the energy density µ .  The energy density Eq. (4.34) is the sum of the contributions from the 

electromagnetic fields and the other tidal fields. This conservation of energy provides the basis for 

converting value from one form to another. The average stress p  we characterize as the pressure. The 

field equations yield a particularly interesting result Eq. (4.35) that algebraically relates the diagonal 

stress components and energy density to the orientation potentials. These diagonal components and the 

energy density are typically thought to be non-negative so this result imposes strong constraints on the 

behavior of the electromagnetic and tidal fields.  
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Of particular interest in applications will be the behavior of the divergence of the acceleration of 

energy, Eq. (4.23), where we eliminate the divergence of the tidal bond Eq. (4.24) and make use of the 

algebraic relationship for the diagonal pressure components Eq. (4.35), (Cf. exercise 37): 

 2 2
1

p
q p q q q

n

υ υα υα υυ υα υ
υ υα υα υυ α υ υ

µ
κ µ θ θ ω ω ω ω ω′

′

− 
∆ = + − + − − + + 

− 
 (4.58) 

In numerical examples we may start at a point of no acceleration, so the last two terms start at zero. We 

see that the inertial and compression contributions generate a positive contribution, whereas the two 

vorticity contributions are negative. It is noteworthy that the magnetic contributions have cancelled and 

don’t appear. It is not the payoffs that drive the system to equilibrium. The forces that drive the system 

towards the equilibrium would be the inertial or compression forces. This is indicated by the divergence. 

Divergence q
υ

υ∆  is a measure of flow out of a small volume centered at the point of interest. Thus 

the inertial effects lead to an increase of acceleration as we move away from the point of interest. If the 

actual flow is stationary so that the forces balance, there must be a compensating force that is negative. 

This compensating force is the gravitational attraction. The vorticity contributions on the other hand cause 

the acceleration to decrease as we move away from the point of interest. Such contributions provide a 

centrifugal effect that is opposite to gravity. 

 

Table 4-6: Player fixed frame model—inertial components 

Distinction Variable Properties 

Energy qυ
 

The stress tensor for both components active, Eq. (4.23) provides the 

gradients of the acceleration of the flow of energy: 
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Pressure 
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Algebraic relation between pressure p , which is the average stress and the 

stress tensor components; Eq. (4.35) is an alternate to Eq. (4.34) for the 

energy density; Eq. (4.51) provides the time evolution: 
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Eq. (4.53) and (4.52) must be satisfied by the sources: 
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The stress components internal to the players are not constrained.
 

 

For applications, a model must be provided for the stress tensor and energy density. We should 

specify whether these scalar fields change in time, whether they are related etc. The simplest choice is one 

in which all the stress components are determined by the average stress: 

 

0

p ph

p ph

p ph

υυ υυ

αβ αβ

υα υα

′ ′=

=

= =

 (4.59) 

This stress tensor defines a perfect fluid. However, we find arguments later that this choice is not 

consistent with the field equations (section 4.5).  
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We also need a model for the energy density. An assumption used for physical systems is that the 

energy density is proportional to the pressure: 

 pµ α=  (4.60) 

We call the proportionality constant the structural coupling or resilience α  as the player’s response to 

stresses or forces that lead to actions. The more resilient the system, the higher is the value of α  and 

hence the higher is the energy density.  

Even such simple assumptions provide insight. We can create separately a model for the inactive 

space corresponding to the players and a model for the active space corresponding to the strategic 

choices. In addition, we anticipate a relationship (Thomas G. H., 2006) between the strain observed in the 

geometry and the stress on the inertial fields. In many physical systems the stress is proportional to the 

strain. So in a near perfect fluid, we might have the conductivity model in which  

 pυα υασθ=  (4.61) 

In a fluid the proportionality constant is the viscosity. In statics it is Young’s modulus. In electromagnetic 

theory, the strain υαθ  is the electric field and suggests we call pυα  the current of player α  along the 

direction υ .  

Therefore the stress-strain relationship seems entirely like an entirely reasonable assumption: we call 

the proportionality constant the conductivity of the medium since the law is a version of Ohm’s Law 

where the electrical resistance is inversely proportional to the conductivity. Ohm’s Law is that an applied 

voltage generates a proportional current. More generally, we keep the idea that pυα  is the current of 

player α even with zero player charge jE ο . This is consistent with electromagnetic phenomena in which 

both the charges and currents specify the coupling of the fields to the sources. In particular a system can 

be electrically neutral and still display a current: we shall see that this is the case for decision process 

theory. The player charges can vanish yet there can be player currents that generate payoff fields. 

The inertial fields indicate the reluctance or willingness of the players to make choices in a given 

direction. They suggest to the player whether or not there is an impending event requiring them to change 

their behaviors. This is separate from whether the choices made are right in for example a game theory 

sense. When players are willing to move in a given direction we have an effect alluded to in section 2.8. 

When there is great reluctance to change course, we have an often seen behavior to stay the course, no 

matter how disastrous. We see that the inertial field behaviors are not arbitrary however and obey 

equations that must be considered as part of the field equations. Though we might in isolation be able to 

describe where a particular behavior might lead, we can’t trust that behavior to be part of the overall 

solution because of the massive coupling of the effects. We suggest that the mechanisms identified are 

nevertheless real, as are their resultant coupled behaviors.  

4.5 Quasi-stationary hypothesis 

The equations for the player fixed frame model are partial differential equations in the harmonic 

coordinates. Since it is a general theorem (Courant & Hilbert, 1962) that such equations with their 

boundary conditions have well behaved solutions, with sufficient computing power we can solve these 

equations for interesting decision processes. Unfortunately mathematical existence proofs of solutions are 

not the same as practical methods for solutions. We have to carefully specify all of the equations and 

constraints and evaluate whether solutions are not only feasible but practical. We do that in this section. 

As we said in the introduction to this chapter, significant insight is obtained in the study of 

electromagnetic fields by starting with a study of electro-static and magneto-static phenomena, in which 

all of the fields are static, which is to say stationary or independent of time. Therefore it makes sense to 

add to this requirement to our player fixed frame model. Unless stated explicitly otherwise, we make that 

assumption in this book. 

Because there are currents and magnetic fields, the approximation is more properly quasi-stationary. 

These electro-static and magneto-static solutions can be extended to cover features that appear in fully 

dynamic systems. Wave phenomena are added by extending these stationary solutions to harmonic 
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solutions (phasors) that can be solved using the same techniques as used for stationary solutions. In this 

way, more realistic dynamic solutions are built, along with a deeper understanding of the behaviors of 

systems of this type.  

In this section, and indeed for the remainder of the book, we consider such an approach for the player 

fixed frame model. The resultant solutions will be for any number of active or inactive strategies and any 

number of players in the player fixed frame model in which the orientation potentials in the co-moving 

frame are stationary, which we call the quasi-stationary hypothesis. The resultant harmonics we term 

electro-gravitational waves, as the energy can move back and forth from the electromagnetic field to the 

gravitational field.  

We can transform to the central holonomic frame in which the metric is independent of time. We call 

time in that frame the central time. We thus see that time in that frame is an isometry. In the central 

holonomic frame we identify harmonic solutions for the coordinates (phasors). For the fixed frame 

model, in the central holonomic frame the active flow components are zero, exercise 41, Eq. (4.145).  

With the quasi-stationary hypothesis, the proper time derivative of all the co-moving orthonormal 

frame orientation potentials, acceleration and inertial fields are zero. In other words, along the streamline, 

none of the potentials change value. We are in a stationary orthonormal frame. Based on exercises 20 

and 21 at the end of the chapter, since these scalar fields are independent of proper time, the differential 

operators for proper time and proper strategy mutually commute when operating on such scalars. We can 

then treat the differential equations for the orientation potentials using standard techniques for partial 

differential equations. We go through each table from sections 4.1 and 4.4 to isolate the equations that are 

relevant. The algebraic equations require special attention, which we do in section 4.5.4, which leads to 

the assumption that the shear components υαθ  are zero (which we equate to very large conductivity) and 

the tidal bond tensors 
υ

αβω  are diagonal in the inactive indices. 

4.5.1 Stationary scalars 

In Table 4-1, if we temporarily assume in this section that the active transformations are independent 

of time, the exactness conditions Eq. (3.60) and Eq. (3.71) reduce to: 

 

( )
( )

( )

2

2

a a

a a

a a a

E q e E

E q E

E E e E

α
υ ο υ υ α ο

υ υ υα
υ α υ

α
υ υ υ υ υυ α υυ ο

θ

ω

ω ω′ ′ ′ ′

∆ = +

∆ = +

∆ − ∆ = −

 (4.62) 

These equations have solutions. Because we have the divergence and curl of 
a

E υ , we can solve for these 

fields, exercise 18. Moreover, the divergence of 
a

E ο  leads to a solution for 
a

E ο  (Cf. exercise 18). We 

deal next with the acceleration fields. 

In Table 4-4, based on the quasi-stationary hypothesis, we take both the electric and magnetic fields 

to be constants in proper time. Taking the electric field independent of time we get the divergence of the 

magnetic field: 

 2q p
υ υ υ υ β β υ

υ αυ αυυ α υυ αβ υυ υ β αυ αυω ω ω ω ω ω ω ω κ′ ′ ′ ′ ′
′ ′ ′ ′ ′∆ = − + + −  (4.63) 

We impose the constraint that the magnetic field is independent of proper time, analogous to Kirchhoff’s 

Law, from Eq. (4.50): 

 q q
β β

υ υ α υ υα υ υα υ υ α υα υ β υ α υβθ θ θ θ ω θ ω θ′ ′ ′ ′ ′ ′∆ − ∆ = − + − +  (4.64) 

This is more complicated that Kirchhoff’s law since the curl is not zero. The curl depends on the 

acceleration as well as the tidal bond tensors. Because we assume all fields are independent of proper 

time, the time dependent Eq. (4.43) is satisfied identically. 



The Dynamics of Decision Processes 

 

97 

 

The tidal fields simplify as well. From Table 4-5, we see that the components υαβω  are independent 

of time because the electric field is independent of time using Eq. (4.42). We obtain a curl condition on 

the acceleration from requiring the tidal magnetic field to be independent of time from Eq. (4.36): 

 ( )4q q
α α

υ υ υ υ υα υ υ α υω θ ω θ′ ′ ′ ′∆ − ∆ = −  (4.65) 

This equation along with Eq. (4.23), Table 4-6 determines the differential equations for the acceleration 

along the active directions. 

There is one equation that is not identically satisfied, Eq. (4.27): 
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 (4.66) 

We have written the independent symmetric and antisymmetric parts that must be satisfied separately. 

Finally we look at the equations imposed on the inertial forces Table 4-6 and from Eq. (4.51), impose 

the condition: 

 0p
υβ

υβθ =  (4.67) 

We need more information to impose further constraints, though we note that the last three equations 

simplify if the electric field υαθ  is zero. For a fixed current, the electric field is inversely proportional to 

the conductivity, Eq. (4.61), so this equation implies very large conductivity. The decision system acts 

like a “meta” in that changes toward equilibrium occur very quickly. In order to better understand this 

issue as well as the dynamic behaviors, we consider a broader context in which the active transformations 

are not independent of time. 

4.5.2 Streamline solutions 

We propose and here define dynamic streamline solutions. Because the scalar fields are independent 

of proper time, the coefficient fields in the exactness conditions Eq. (3.60) and in the harmonic gauge 

condition Eq. (3.71) are independent of time. We generalize the solutions Eq. (4.62) by superposing 

solutions in powers nτ  of the streamline proper time scalar field, with coefficients ( )a

n
X υ that are scalar 

functions that depend only on the proper-strategy scalar functions y
υ

(see exercises 22 and 24):  

 ( ) ( ),a a n

n

n

x Xυ τ υ τ=∑  (4.68) 

This expansion provides time dependent tangent vectors 
a

E ο  and 
a

E υ  (exercise 26) that satisfy the 

commutation rules (exercises 27 and 29) as long as we meet appropriate constraints (exercise 28).  

We motivate this approach using the definition of integral curves that exist for any vector field 
a

Z . 

The integral curve is defined by specifying that its tangent through a point is set by the vector field: 

 ( )( )
a

adx
Z x s

ds
=  (4.69) 

These coupled first order equations have a unique solution and provide a definition of the coordinate s  

associated with the vector field. The coordinate s  by its definition moves along the streamline and thus 

provides a path dependent definition of proper time. We refer to this simply as the proper time, with the 

understanding that the path is understood to be along the streamline.  

We apply this concept to the orthonormal set of vectors and conclude that at each point there will be 

integral curves associated with each orthonormal vector. In particular there will be an integral curve 

associated with the flow that defines the proper time (a streamline): 

 ( )( )
a

a b a a

b

dx
x E x E x

d
ο ο ο τ

τ
∆ = ∂ = =  (4.70) 

The scalar field τ  is the measure defined along the integral curve with 1οτ∆ =  (Cf. exercises 24-25).  
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We compute the tangent vectors from the holonomic scalar function ( ),ax y τ  using the result of 

exercise 25 in terms of the characteristic vector potential (or simply characteristic potential) aυ : 

 
( )2

a a

a a a

E x

E x a x

ο τ

υ υ υ υ τλ τ

= ∂

= ∂ + − ∂
 (4.71) 

We use these expressions as the basis for determining the holonomic scalars in terms of the proper active 

strategies and proper time. We note that the time component can initially be set as 1t
E ο = . If we do that, 

then the second equation at 0τ =  shows that the initial values of t
E υ  are determined by the characteristic 

potential
19

 aυ  and the variations of the time field tυ∂ : 

 
00

t
E t aυ υ υττ ==

= ∂ +  (4.72) 

The characteristic potential thus provides the initial values of this frame transformation.  If the “curl” of 

the vector field is given (next paragraph), then different frames would be distinguished only by the 

divergence of the vector field: 

 a a
υ υ

υ υλ ψ∂ + =  (4.73) 

The vector field υλ  is introduced below in Eq. (4.75). Since decision process results are independent of 

frame, we are free to choose this arbitrary scalar field to be zero, 0ψ = : 

 0a a
υ υ

υ υλ∂ + =  (4.74) 

This provides a covariant definition of the frame. 

To show that solutions exist, we turn to the power series expansion Eq. (4.68). In the expansion, Eq. 

(4.68), we specify the initial values of the coordinate a
x  along the surface specified by 0τ =  as well as 

the initial flows 
a

E ο .  We argue that the expansion in terms of powers of the proper time scalar function 

τ  can be solved in terms of these initial conditions. We require that the tangent vectors 
a

E ο  and 
a

E υ  

satisfy the commutation rules for the derivatives, Eq. (3.60), which we leave as exercises 27 and 29. We 

find that the gradient of the scalar field τ  along the proper strategy direction is determined (exercises 24, 

25, 28, and 32) if we impose, in addition to the gradient condition Eq. (4.74), a condition on the “curl” of 

the characteristic potential
 
aυ : 

 

( ) ( ) ( )

2

2

e e eq q q

a

q e q

a a e

υ υ υ

α
υ υ υ α υ

α
υ υ υ υ υυ α υυ

τ λ τ

λ θ

ω ω′ ′ ′ ′

∆ = −

= + ≡ ∂

∂ − ∂ = −

 (4.75) 

We redefine the term characteristic potential to be ( )2 e 2 expqa a qυ υ− = − 20
. Eq. (4.75) is a striking result 

since it shows that the gradient of proper time is not zero but is linear in proper time along the streamline. 

The proportionality constant is given by the acceleration and product of the charge times the electric field 

(the “force” due to the electric field). The coefficient 2 eq
aυ−  acts like the potential for the magnetic and 

tidal fields and is determined by them. Our choice of “gauge” Eq. (4.74) is ( )e 0q
a

υ
υ∂ = . Finally we see 

that the curl of υλ  must vanish. We look for solutions that enforce this condition and are consistent with 

the field equations. 

                                                      
19

 The potential here is proportional to the analog of the gravitomagnetic potential of general relativity.  
20

 As a subtle reminder, the exponential function is written as eq
 using the “function” font to distinguish it from the 

variables eα
 that represent the player charges.  
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4.5.3 Player ownership rule 

We show that the conditions on the “curl” of υλ  are related to the question of how and in what sense, 

each player claims ownership of strategies. The scalar field υλ  is a known function of the acceleration, 

electric field and charge, so its “curl” is determined. To require that the “curl” is zero imposes a condition 

on these fields. We enforce the condition that the “curl” of υλ , Eq. (4.75), is zero by assuming that the 

electric field (in the co-moving frame) vanishes, a condition that does not violate any of the field 

equations: 

 0υαθ =  (4.76) 

This condition becomes part of our quasi-stationary hypothesis. We motivated this assumption earlier by 

suggesting that this means for finite currents pυα , we have very large conductivity.  

This argument is based on a physics analogy and is an example of non-static behaviors of the 

centrally co-moving hypothesis (Thomas G. H., 2006) in which time is inactive (exercise 46). A non-zero 

shear υαθ  is expected to give rise to a non-zero stress pυα , roughly proportional to the shear (in physics 

the proportionality would be the viscosity); the proportionality constant is the reciprocal of the 

conductivity. The rate of change of the energy density is then proportional to υα
υαθ θ , which must be zero 

if the energy density is stationary, Eq. (4.67). This implies that each of the shear components is zero. If 

the shear components (electric field components) are zero, then the coefficient qυ υλ =  is the acceleration 

vector and from Eq. (4.65) the “curl” of the acceleration vector is zero. Because the gradients of the 

acceleration are not zero, Eq. (4.58), we have a non-zero acceleration field. The acceleration effects are a 

consequence of our frame of reference. We believe this hypothesis is useful because we focus on the 

vorticity of the solutions, which we believe to be the significant new feature of decision process theory. 

We note that our argument does not logically require that the stress components (player current) p
υ

α  

be zero. In fact, to insure that the energy density be stationary Eq. (4.51), we require only that the shear 

components be small (very large conductivity). The corresponding stress components need not vanish. 

For each (proper) player α , the stress components p
υ

α  represent their view of the player passion to 

exercise strategy υ . The “divergence” of the payoff for this player, Eq. (4.63), shows that the player 

passion is the source of their view of the player payoff in the same way that the electric current is the 

source of the magnetic field in physics: 

 2q p
υ υ υ υ β β υ

υ αυ αυυ α υυ αβ υυ υ β αυ αυω ω ω ω ω ω ω ω κ′ ′ ′ ′ ′
′ ′ ′ ′ ′∆ = − + + −  (4.77) 

For a single active strategy, every term but the last depends on the payoffs, which must vanish since the 

payoffs αυυω ′  are antisymmetric in the active proper strategies, of which there is only one. This implies 

for a single active strategy that  

 0pαυ =  (4.78) 

For two or more active strategies however, it is possible for the player passion to be non-zero. 

The next question is to determine the appropriate equations of motion for the player passion. We 

tentatively consider the following player ownership rule for player passions (Cf. chapter 6): each player 

is accountable and hence owns only his or her own strategies αυ ∈S , where αS  is the set of strategies 

owned by α .  By this we mean there can be no player passion for a strategy that is not owned by player 

α , or equivalently 0p
υ

α =  for every strategy not owned αυ ∉S . We may have players that own no 

strategies: we call them dependent players. A player that owns at least one strategy is therefore a non-

dependent player. To insure that these distinctions carry a meaning over the space and time of the 

decision process, a sufficient assumption is that the “curl” of the player passion is zero. Then there would 

be a coordinate surface whose normal aligned with each owned strategy. All such surfaces would be in 

the subspace the player does not own.  
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In the next section we show that such equations simplify further because the tidal bond υαβω  can be 

transformed to a diagonal matrix using a constant transformation. That being the case, we see that the 

boundary condition for a dependent player α , is that 0p
υ

α =  on an initial surface for every strategy υ  

and so must propagate to zero everywhere. If a player starts with no ownership of any strategy on an 

initial surface, that remains true at all other points of space in the special case that the “curl” vanishes. 

In a similar way we investigate strategies that a non-dependent player owns. When the “curl” 

vanishes, the integral curves that result from Eq. (4.79) for each strategy will propagate from the initial 

boundary surface to new surfaces defined by the player ownership potential :p p pα αυ υ α= ∂ . These 

potential surfaces act like “coordinates” of what is possible for the player to influence through her player 

passion. Orthogonal to these surfaces will be the strategies that the player does not own. 

Notwithstanding such nice features, we find these assumptions not totally compelling and overly 

restrictive. The fundamental concept is that the player passion is the idiosyncratic view of that player of 

the stresses all other players feel and this gives rise to the player’s idiosyncratic view of their payoff. 

However, a conclusion that we can draw is the virtue of finding such coordinate surfaces: in other words 

we need to determine whether the player passion in some sense corresponds to a vector field with zero 

curl. 

The equations that determine the player current are determined using the “divergence” Eq. (4.52) for 

stationary stresses, along with a tensor Xαυυ ′  determined by the “curl” from the conductivity model. That 

assumption is that the current is proportional to the electric field, Eq. (4.61), and the equation for that 

field, Eq. (4.50) is given below: 

 
p p q p p

p p q p q p p p X

υ υ βυ υ
υ α α υ υαβ υ α

β β
υ υ α υ υα υ υ α υ υα υα υ β υ α υβ αυυ

ω

ω ω′ ′ ′ ′ ′ ′ ′

∂ = + + Θ

∂ − ∂ = − − + ≡
 (4.79) 

To get small electric field we must go farther and say that the conductivity is very large. If the 

conductivity is not constant there will be an additional term in the second equation.  

We see that the “curl” Xαυυ ′  need not vanish, though it might be instructive to consider a model in 

which it does. We will denote this as the ownership model, loosely related to the discussion above. There 

is no assumption that the electric field is proportional to the player current: we simply assert that 

0Xαυυ ′ = . This model does not make the conductivity assumption.  

For the conductivity model, there also exists a potential (Exercise 67) that can be used to define 

coordinate surfaces without assuming that Xαυυ ′  is identically zero. The potential is found by identifying 

an integrating factor for the player passion.  

This leaves us with two quite distinct and useful models for the player passion, both defined in terms 

of potential fields: the ownership model and the conductivity model. We will study both. We assert that in 

each case these potentials provide a unique and well defined set of definitions of player ownership based 

on the coordinate surfaces defined by their potentials. The strength of ownership is a measure of the 

passion the player brings to the decision. This description includes the conductivity model where the 

“curl” does not vanish (Cf. Exercise 67).  

We see the connection to ownership as follows. For the pure strategies the player has control over, 

she is indifferent to which one should be picked. The choice can be made on the basis of what makes the 

most strategic sense: in game theory this choice is based on an optimization strategy. We think of the 

surfaces of constant player passion in the same way: they describe choices for which the player is 

indifferent. The passion vector for each player is normal to her indifference surface. The verbiage makes 

some sense because the opposite of passion would be indifference. 
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4.5.4 Inactive stress equations 

The tidal bond strain components reflect the degree to which players cooperate as opposed to 

decisions that a player influences through their intentionality. The assumption of zero electric field 

components simplifies the constraint Eq. (4.66) on the tidal stress components: 

 
0υ υ αβ υ υαβ

γ γ
υα υ βγ υ α υβγ

ω ω

ω ω ω ω

′ ′

′ ′

∆ − ∆ =

=
 (4.80) 

This says that the tidal bond matrices are derivable from a potential and mutually commute. Symmetric 

matrices that mutually commute can be put into diagonal form with a common transformation. We 

identify the class of solutions that becomes part of our quasi-stationary hypothesis in which we impose a 

diagonal form on the tidal bond with a condition on the stresses: 

 
2

0

p
υ υ υ υ

αβ αυ βυ υα β υ αβ αβ

αβ

κ ω ω ω ω η ω κπ

α β π

′
′= + + +

≠ ⇒ =
 (4.81) 

 Since the bond strain matrices have zero “curl”, they can be derived from a potential, υαβ υ αβω ϕ= ∆ . To 

obtain diagonal compression matrices, the strategic viscosity υη  is arbitrary and the reduced pressure 

tensor αβπ  is diagonal. The divergence condition Eq. (4.24) then sets the diagonal components: 

 ( )
1

p
q ph h

n

υ γ υ
υ αβ υ υ γ υ αβ αβ αβ αβ

µ
ϕ ϕ η ϕ κ π

− 
∂ ∂ = + ∂ − ∂ − − + 

− 
 (4.82) 

For stationary tensors, we use exercise 20, Eq. (4.125) and use ordinary derivatives. The resultant bond 

strain matrices are diagonal and are derived from a potential so both equations in Eq. (4.80) are satisfied.  

The result can be generalized by transforming the equations using a constant non-singular 

transformation. If this same transformation is applied to the initial coordinate basis, then we can align 

each inactive strategy j  with a corresponding proper inactive strategy j
α . The equations for the frame 

transformations Table 4-1 then maintain that choice: 

 
j jE E

β
υ α υα βω∂ = −  (4.83) 

For the inactive strategy j
α α= , the coordinate system exhibits compression or expansion, set by the 

diagonal components of the bond matrix. The measure or value of the choices depends on the position in 

space. 

The components j
α α≠  that start at zero remain at zero. This provides a useful interpretation of the 

inactive metric Eq. (3.70) for distinct players j k≠ : 

 
jk j j j k j kE E h E E E E

αβ
α β ο ο ο ογ = + =  (4.84) 

The inactive metric represents the degree of cooperation between the two players and is equal to the 

overlap of the player interest flows (player flows or charges). This is after making an appropriate rotation 

of frames to identify the “diagonal” players. 

We achieve additional insight by looking at the tidal shear equation defined by subtracting from the 

compression tensor a multiple of the diagonal matrix so that the resultant bond shear tensor has zero trace 

(exercise 8, chapter 5): 

 ( ) ( )1
inq h

υ υ γ
υ αβ υ υ υ αβ αβ αβ γσ η σ κ π π∂ ∂ = ∂ + ∂ Θ − ∂ − −  (4.85) 

We see that the bond compression hαβ
υ υ υαβωΘ = ∂ Θ = , acceleration q qυ υ= ∂ , strategic viscosity υη  and 

reduced pressure tensor components αβπ  determine the shear. The complexities of the other tensor fields 

show up explicitly in the expression for the compression Eq. (4.34): 

 31 1 1
2 2 2 2

1
3 i

i

n

n

υ αυυ υα υυ υ αβ υ
υ αυυ υα υυ υ αβ υκµ ω ω ω ω ω ω σ σ′ ′

′ ′

+
−∂ ∂ Θ = − − − − ∂ ∂ − ∂ Θ∂ Θ  (4.86) 
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We have a “gravitational” equation for the bond compression potential Θ . By its definition, the 

compression potential, written as lnV , describes the change of a volume element V . As we move in the 

space of the active strategies, this volume element changes; the more compression, the smaller the volume 

and conversely. This is clearly a property of the geometry of space in decision process theory, not an 

analogy. 

The positive sources for bond compression are the energy density, which is determined by the 

pressure, the magnetic fields (and the electric fields, but we take these components to be zero), the bond 

shear components and the bond compression gradients. The negative sources, which provide a type of 

anti-gravity, are the tidal charge gradient fields and the tidal vorticity fields. 

When the energy density pµ α=  is proportional to the average pressure, the size of the average 

pressure is set by Eq. (4.35): 

 
( ) 1 1

2 2

31
2 2

1

1 3

h h q
h p

n

υ α α υ υ υαβ υ
υ α α υ υ υαβ υα

α αυυ υα υυ
αυυ υα υυ

α κπ η ω ω
κ

ω ω ω ω ω ω′ ′
′ ′

   − + + Θ − Θ + − Θ Θ
 + =  

  − + + +  

 (4.87) 

If there is at least one active strategy, the coefficient of the average pressure on the left is positive. For the 

pressure to be positive, the terms on the right must sum up to be positive as well. The average pressure is 

thus determined by the scalar potentials that are determined by the field equations and functions we can 

set by model assumptions, the viscosity vector υη  and the reduced pressure components αβπ . 

Finally, it is worth noting that for a single active strategy, we need not impose the constraint Eq. 

(4.81) on the stress since the “curl” and commutator relations Eq. (4.80) are satisfied identically. We can 

choose to make either the strains or the stresses have a simple form. 

4.5.5 Active stress equations 

We are given a choice for the viscosity vector υη  and the reduced pressure components αβπ . We compute 

the average pressure from Eq. (4.87) and the player current p
υ

α  from Eq. (4.79). We show in this section 

that the field equations determine the remaining stress components, which are the active stresses pυυ ′ . 

We use the fact that the acceleration vector qυ  has zero “curl” (section 4.5.3) so the vector field is the 

gradient of a scalar field q qυ υ= ∂ .  Furthermore, the divergence is determined by the scalar fields and the 

average pressure: 

 2
1

p
q q q q p

n

υ υ υ α υυ υα
υ υ υ α υυ υα

µ
ϕ ω ω ω ω κ µ′

′

− 
∂ ∂ = + ∂ − − + + − 

− 
 (4.88) 

We assume solutions satisfy the Cauchy-Kowalewsky existence theorem (Courant & Hilbert, 1962, p. 

39).  

In addition to the field equation for the divergence of the acceleration vector, we have a more general 

set of relations involving the gradients, Eq. (4.23), which demonstrate that the acceleration vectors, along 

with the other scalar fields determine the active stress components (but see Exercise 66): 

 
2 2 2

1

q q q

p p
p h

n

β α γ
υ υ υ υ υ α υ β υ υ γ

υυ υ α υ α
υυ υ υα υ αυ υ υ υυ

ϕ ϕ ϕ

κ µ
ω ω ω ω ω ω κ

′ ′ ′ ′

′ ′′ ′′
′′ ′ ′ ′ ′′ ′

 −∂ ∂ + ∂ ∂ + ∂ ∂ − ∂ ∂
 

= −  
+ + + + −  −  

 (4.89) 

We have moved significantly away from the concept of a perfect fluid, Eq. (4.59). In any given solution 

we need to verify that the stresses make sense. The price we pay for having a relatively simple structure 

for the strains and vorticity components in the player fixed frame model is that the energy-momentum 

stresses deviate from the ideal fluid. The deviations are mandated by the presence of non-zero payoff 

fields and charge gradient fields, as in the expression Eq. (4.81) for the inactive stress components. These 

internal fields would not be expected to have a perfect fluid behavior. We conclude from this brief 
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analysis that we have identified the essential equations for the player fixed frame model. They form a 

consistent set with what we expect to be non-trivial solutions. 

4.5.6 Frame wave equation 

In addition to the stationary scalar equations based on the quasi-stationary hypothesis, we extract a 

time dependent wave equation that applies to the player fixed frame model. We believe the result justifies 

the effort. With the assumption of zero electric field, the coefficients of the expansion (4.68) are 

determined by the harmonic gauge condition Eq. (3.71): 

 ( ) ( )1 0a a a
e e E E q E

α ο υ υ υα
α ο υ α υω+ ∆ + ∆ − + =  (4.90) 

We have incorporated the conditions Eq. (3.60) in the properties of the proper time scalar field τ . We 

demonstrate solutions to this equation using a power series expansion. The basic idea is to expand each 

term in Eq. (4.90) and equate terms with the same power: 

 

( ) ( ) ( )( )

( ) ( ) ( )

2
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1

0 0 0

1 1 2 1

2 1

a a n

n

n

a a n a n a n

n n n

n n n

e e E e e X n n

q E q X q X n a X n

α ο α
α ο α

υ υα υ υα
α υ α υ υ υ

τ

ω ω τ τ τ

+
=

+
= = =

+ ∆ = + + +

 
− + = − + ∂ − + + 

 

∑

∑ ∑ ∑
(4.91) 

The divergence (which is the ordinary derivative when acting on stationary fields) of the tangent vector 
a

E υ  has several terms: 
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∑

 (4.92) 

In the sums we changed the summation index in order to identify the common powers.  

As an example of the process, we start with arbitrarily picking the first two functions ( )0

aX υ  and 

( )0

aX υ . Based on matching powers of τ  we obtain the next term: 

 
( )

( ) ( )( )2 0 0 1 1

1
6 2 4

2 1 4

a a a a aX X q X a q a X a X
e e a a

υ υ υα υ υα υ
υ α υ υ υ α υα υ

α υ

ω ω= −∂ ∂ + + ∂ + + − ∂
+ +

(4.93) 

We see that the second term in the series is determined by the first two terms: the position and the initial 

value of 
a

E ο . Though more complicated than solving differential equations with constant coefficients, it 

is clear that the same pattern maintains. The coefficient 2

a

nX +  will depend on the functions 
a

nX  and 

1

a

nX +  and their gradients. The general case is exercise 34. This demonstrates that given arbitrary fields 

{ }0 1

a a
X X , all other fields 

a

nX  are determined. 

The power series demonstrates that there are solutions to the frame wave equation Eq. (4.90), based 

on given initial conditions. We expected this based on general theorems on elliptic partial differential 

equations (Courant & Hilbert, 1962). To summarize, we write the wave equation as a partial differential 

equation (exercise 34): 

 
( ) ( )

( ) ( )

2 21 4 4 2 2
0

2 2 4 2

a a a

a a

e e a a a q q q x x a q x

a a a q q q q q x q x

α υ υ υ υ υ υ
α υ υ υ τ υ υ τ

υ υα υ υα υ υ υ υα
υ α υ υ υ α υ υ τ α υ

τ τ τ

ω ω τ τ τ ω

 + + − + ∂ + ∂ ∂ + − ∂ ∂
  =
 + ∂ − − + − ∂ + ∂ − + ∂ 

(4.94) 
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This differs from the usual wave equation because of the time and strategy dependence of the coefficients. 

These differences make it impossible to find solutions that factor into a function of proper time and a 

function of position.  

The coefficients become independent of central time eqτ τ=  (exercise 54) when we transform to the 

central holonomic frame (exercises 41-47): 

 
( ) ( )

( )

2 21 4 e
0

4 e 2 e

a q a a

q a q a

x e e a a x q x

a x q a x

υυ α υ υ υα
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δ ω

ω

′
′

 ∂ ∂ − + + ∂ + + ∂
  =
 − ∂ ∂ + + ∂ 

 (4.95) 

The wave equation has the feature that linear combinations of solutions are again solutions: the equations 

are linear in a
x . In general, solutions to these equations will reflect oscillations as well as attenuation (and 

growth). Such behaviors can be studied by considering phasor solutions that correspond to a fixed 

frequency 
a ix e ϖτ∝ , exercise 55.  

The solution to Eq. (4.95) equation provides the transformation between two holonomic coordinate 

bases: the normal-form coordinate basis and the central holonomic frame coordinate basis (section 3.6). 

A phasor solution can be thought of as reflecting a rotating basis. The rotation effects are transmitted from 

one point in space to another as a wave that is possibly attenuated. Since these effects are present in the 

coordinate transformation, we should see these effects in other tensor quantities such as the metric and 

curvature of space-time. In the next section we consider the harmonic behaviors implied by each of these 

equations.  

4.5.7 Harmonics 

We can construct general solutions from linear combinations of specific solutions. As a step to 

identify specific solutions that might be of interest, note that any solution will be generated once we 

specify the boundary conditions on a timelike hypersurface 0τ = . To make the discussion explicit (Cf. 

chapter 8), we imagine that there are three active (proper) spatial directions  { }x y zυ ∈ , though the 

results hold for all cases of one or more active strategies. Based on the boundary conditions we then have 

the active coordinates ( ), , ,ax x y z τ  at all space time. In particular we have the active coordinates along 

the space like hypersurface 0z = . We can decompose any general function of the remaining three 

variables { }, ,x y τ   into a Fourier or harmonic series in τ  at each transverse point { },x y . This might be 

especially insightful if the behaviors in the space directions { },x y  are periodic for example. An analogy 

from electrical engineering would be a wave guide in which the transverse space direction behaviors are 

strongly influenced by the geometry of the guide. The behavior along the time direction can be resolved 

into a continuum of harmonic terms starting with a zero frequency (linear) contribution of the form 

U Vτ+ , and including sine and cosine terms, sinϖτ  and cosϖτ , respectively.  A good deal of 

understanding of the general solution can be obtained based on expectations of the behavior of the 

individual harmonic contributions. 

Conversely, we can start with any harmonic contribution along the space like hypersurface 0z = , 

taking specific harmonics for the transverse directions such as sin sinmx my  and multiplying by the time 

harmonic such as sinϖτ . We expect that with suitable boundary conditions, there will be a solution for 

each of these harmonics and that the superposition of such harmonics will allow us to reconstruct the 

general solution. 

Though the two approaches should be equivalent, they may differ in their ability to deliver accurate 

results using numerical approximations. For example, the successive terms in Eq. (4.138) for the power 

series solutions (exercise 33) involve gradients of previous fields. We expect small errors to grow as we 

compute higher order terms. We will show below that a consideration of harmonics can be based on 

polynomials with the higher order coefficients set to be small (zero) with the possibility of the lower order 

terms being computed without the same loss of accuracy (see exercise 35). Based on these considerations, 
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we examine harmonic solutions, emphasizing that the harmonics are the usual Fourier series on the 

hypersurface 0z = , but away from that hypersurface the behaviors follow from the full partial differential 

equation Eq. (4.94). 

The zero frequency harmonic solution of Eq. (4.94) is linear in proper time: 

 
0 0

a a ax U V τ= +  (4.96) 

The coefficients are functions of position. Using this as a trial solution, we obtain two coupled partial 

differential equations for the coefficients: 
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∂ ∂ − + ∂ + ∂ + ∂ − − =

∂ ∂ − + ∂ + − ∂ + =
 (4.97) 

This generalizes the approach we started with in Eq. (4.62) at the beginning of the section.  

It suggests to us a novel approach. We can have a solution constant in time, linear in time and in 

general a superposition of harmonic polynomials of degree N . The harmonic polynomials generalize the 

notion of phasor solutions. In the limit that the degree N  goes to infinity, assuming that the limit is 

sufficiently well behaved, we obtain the quasi-stationary harmonics. As mentioned, because of the 

complexity of the differential equations, these harmonic polynomials will not in general be a simple factor 

of eiϖτ
 and a function of position away from the initial space like hypersurface, which we have chosen to 

illustrate above as 0z =  for three active strategies. We will however be able to transform to a frame in 

which we obtain phasor solutions defined in the usual way. First however we analyze the situation in our 

current frame of reference. 

Sticking with this illustrative example, a phasor solution on 0z =  would be linear combinations of 

sinϖτ  and cosϖτ  multiplied by harmonics ( ),aV x yϖ  and ( ),aU x yϖ  respectively for the transverse 

strategies along { },x y . We can approximate these harmonic functions with harmonic polynomials of 

degree N  by taking the real and imaginary parts of the exponential power series expansions of the 

complex phase i
e

ϖτ   and truncating after N  terms for { }0 , , 0x y zυ = = : 
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 (4.98) 

These power series set the values of the coefficients on the surface 
0υ  by requiring 1 2 0a a

N NX X+ += =  for 

polynomials ( ),a

NP υ τ , exercise 35. So, on the hypersurface 0z = , we have: 
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 (4.99) 

Away from the initial surface, the coefficients will evolve and in general will no longer reflect a pure 

decomposition into a single harmonic.  We are led to this complexity because the harmonic shapes 

change with z  because the coefficients of the partial differential equations depend on the proper 

strategies υ . A similar complexity arises in electrical engineering when there are damping effects that 

depend on z , which arise from reactance contributions. 

We convert to first order partial differential equations using ( ) ( )a a

n nY Xυ υυ υ= ∂ . We then have a 

complete set of coupled ordinary partial differential equations (4.140) that are solved numerically using 

known techniques (Courant & Hilbert, 1962), using the numerical method of lines, (Wolfram, 1992) in 

chapter 8. However, this is not always effective for elliptic equations, which characterize our stationary 
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equation for two or more active strategies. When there are several inactive strategies, we note that 

solutions to these coupled partial differential equations may benefit from other lattice techniques such as 

finite element analysis (Bhatti, 2005). In any event, the harmonic polynomials are extended in a practical 

way to functions of both the proper strategies and proper time, ( ),υ τ .  

Any solution of the partial differential equations can be written as superposition of these extended 

harmonic polynomial solutions. In the limit that the number of polynomial terms goes to infinity, we 

write any solution as a superposition of harmonics. 

In electrical engineering, the overall time dependence can be constructed from a superposition of 

phasor solutions that have defined time dependence ( )sin , cosϖτ ϖτ  and a computed spatial 

dependence. These solutions help characterize the behaviors expected. For the wave equation (4.94), we 

view the harmonic polynomial solutions as providing the analogous insight. For any number of active 

strategies, any superposition of appropriate harmonic polynomials will again be a solution. The initial 

values on the hyperplane will be: 

 ( ) ( ) ( ) ( ) ( )( )0 0 0 0 0 0 0, cos sina a a a a

N Nx U V U Vϖ ϖ
ϖ

υ τ υ υ τ υ ϖτ υ ϖτ= + + +∑  (4.100) 

There is a similar expansion for the gradient: 

 ( ) ( ) ( ) ( ) ( )( )0 0 0 0 0 0 0, cos sina a a a a

N Nx U V U Vυ υ υ υ ϖ υ ϖ
ϖ

υ τ υ υ τ υ ϖτ υ ϖτ∂ = ∂ + ∂ + ∂ + ∂∑ (4.101) 

Each harmonic polynomial coefficient will evolve to a different spatial dependence, one that is 

determined from the differential equations. We set the proper time behavior on an initial surface in 

(proper) space and the remaining spatial dependence is determined. An analysis of a complete set of 

harmonics will be equivalent to an analysis of the general solution to the partial differential equations. 

The above analysis is in a co-moving orthonormal frame. We can transform to the central holonomic 

frame in which proper time and proper strategies form the (non-orthonormal) holonomic basis and in 

which the fixed frame model is co-moving (for the active strategies). We then obtain the partial 

differential equation Eq. (4.95) that can be solved using harmonics (phasors), exercises 55-56, where 
a a i

x x e
ϖτ

ϖ= : 
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 (4.102) 

We obtain solutions in terms of complex numbers; we superpose solutions with appropriate boundary 

conditions and take the real part to obtain our final answer. Numerically, either this approach or the 

previous one gives the same answers. If we have the solution for one such partial differential equation we 

can use the defining equation for the proper times eqτ τ=  to get the other. For example, we see that a 

steady-state wave in the central holonomic frame will have a somewhat different behavior with the proper 

time: 

 ( )sin sin eqϖτ ϖτ=  (4.103) 

The apparent frequency changes depending on the streamline for constant values of the proper time τ  

because of the variation of the potential q  that determines the total acceleration. 

Breaking our solution down into harmonics provides us necessary and practical insight into the 

behaviors of decisions in our decision process theory. The limitations are the usual sort and are based on 

the maximum number of terms practical for numerical calculations. If we work in the approximation of a 

finite number of polynomial terms for Eq. (4.98), or using the central holonomic frame Eq. (4.102), we 

nevertheless expect to be able to ascertain (possibly damped) wave phenomena in our solutions. We 

expect to observe them more directly in Eq. (4.102). At any point in space, we expect to see harmonic 

behavior. The motion of the peaks (valleys) defines the wave motion, which we expect to propagate at the 

maximum speed allowed by the theory (corresponding to the speed of light in physical theories). If we 
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create a pulse, then we would expect to see that pulse propagate and possibly dissipate over time and/or 

space. The number of independent waves will depend on the number of active strategies. In particular, we 

expect to see wave phenomena even for a single active strategy. In the next section, these general results 

for any number of strategies will be applied to a single active strategy. 

4.6 Single active strategy dynamic solutions 

In realistic solutions with many active strategies and many players, it may still happen that many of 

the strategies are effectively not utilized.  In this case the solution is an equivalent decision process with 

fewer strategies and more players. For each strategy that is not utilized in the sense that its strategy is an 

isometry, that strategy acts like the inactive strategy of a player, albeit a player that has no active 

strategies of his own. The simplest case is that in which all but one active strategy is replaced with players 

who are inactive, but make an impact on the game through their payoffs and other indirect orientation 

potentials. We call these single active strategy solutions. 

For streamline solutions with a single active strategy, the partial differential equations have two 

variables. The number of field equations is reduced since there are no magnetic fields αυυω ′  tidal magnetic 

fields υυω ′  , or “curl” equations, since these are antisymmetric in the active components. This simplifies 

the covariant gradients Eq. (4.75): 

 

1

0a

q

ο

υ

υ υ

τ

τ τ

∆ =

=

∆ = −

 (4.104) 

These equations insure that the commutation rules Eq. (3.60) are satisfied. We write the partial 

differential equations that result from the harmonic wave equation Eq. (4.94) for the components of Eq. 

(4.68), where in the normal-form coordinate basis, t  is time and u  is the active strategy direction
21

:  
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 (4.105) 

The single strategy model is ideal for understanding in better detail how we obtain the harmonic 

coordinate behaviors from these transformations. We expect to gain insight by using the harmonic 

polynomials ( ),a

nP υ τ , Eq. (4.98) and the coefficient equations (exercise 35): 
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(4.106) 

These equations can be successively solved to obtain all of the coefficients once the scalar functions 

{ }q e
υα

υ α α υαω ω  are determined. 

From Table 4-1 we get three coupled equations that determine the scalar functions, along with 

equation for the payoffs: 

                                                      
21

 A similar discussion can be made in the central holonomic frame if we use Eq. (4.95). See section 4.8, exercise 

60. 
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Given the active transformations determined from a
x  and the equations above for the inactive vectors, the 

metric components are determined, Eq. (3.70) and (3.72).  

The remaining scalars are given in section 4.4. The tidal charge gradients υαω  reflect the vorticity 

attributes of the solution and are determined from Table 4-4: 

 2 q
υ υ υ β υβ

υ α υα αβ υ β υαω ω ω ω ω ω∂ = − +  (4.108) 

There are no magnetic or tidal magnetic fields. Because there is only a single active strategy, the player 

current 0pαυ =  is zero, section 4.5.3, Eq. (4.78). The tidal forces Table 4-5 determine the divergence of 

υ
αβω : 

 2
1

p
q p ph h
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υ υ γ υ υ
υ αβ αβ υ υγ αβ υα β αβ αβ αβ

µ
ω ω ω ω ω ω κ

− 
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− 
 (4.109) 

The inertial forces (using Eq. (4.141) from exercise 36) determine the active diagonal stress component: 

 1 1
2 2p q

υ υβ υα υα β α υβ
υ β υ υα β υα υα βκ ω ω ω ω ω ω ω= − + + −  (4.110) 

We are free to pick the energy density scalar µ  and inactive stress scalars pαβ . The average pressure is 

determined from the diagonal stresses, Eq. (2.41). The inertial forces also determine the divergence of the 

acceleration, Eq. (4.58): 
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We use this to eliminate the divergence in Eq. (4.105): 
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 (4.112) 

We thus have sufficient equations to determine all unknown scalar fields as well as the harmonic 

polynomials for any index n  (see exercise 40). 

Our numerical applications will explore these single strategy streamline solutions. We will be able to 

see how the equations provide insight into decision processes. The streamline solutions of the player fixed 

frame model provide the first step towards a quantitative understanding of dynamic behaviors in our 

decision process theory. In the next chapter we return to the prisoner’s dilemma, an important example 

introduced in section 1.4. We provide a more in-depth analysis in chapter 8 and demonstrate the 

relationship between individual player payoffs and the collective vorticity behaviors in decision process 

theory. 

4.7 Outcomes 

In this chapter, we accomplished our goal of deconstructing the theory into its component 

distinctions. We demonstrated that there is a class of models that corresponds to the stationary behavior of 

AC circuits in electrical engineering: these are models in which time is inactive and mutually commuting 

with the player inactive strategies. The resultant equations are partial differential equations that are 

amenable to numerical solution for any number of players and any number of strategies. 
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We demonstrated this in detail for the player fixed frame model. For this model, the student will have 

learned that the compact mathematical expression Eq. (3.1) for decision process theory expands into a 

large number of separate and testable components summarized in Table 4-1, Table 4-4, Table 4-5 and 

Table 4-6. By going into this detail, the student learns the essence of the theory. Based on these detailed 

expressions, the student will understand how to test the many aspects of the self-consistent framework 

against observed behaviors in decision processes. The results come together in the player fixed frame 

model with the quasi-stationary hypothesis. In the next chapter, we apply this model to the prisoner’s 

dilemma, a model that has sparked interest in the game theory literature. 

The attainment of the outcomes of this chapter is facilitated by doing the exercises in the following 

section. Based on this investment, the student should achieve the more detailed outcomes below. 

• One of the goals is to obtain equations for the transformations from the normal-form 

coordinate basis to the orthonormal coordinate basis. In section 4.1, the student should 

understand the time evolution and gradient equations for these transformations and their 

basis. The inactive Killing vectors { }j j jE E E
ο α υ

 are stationary for the player fixed frame 

model. By contrast, the active strategy transformations { }a a a a
E E e E Eο α α ο υ=  depend on 

the proper time through a wave equation. The proper charge eα  however is stationary. 

Sufficient equations exist for the gradients of each stationary field so that these fields are 

determined given initial conditions. The results are summarized in Table 4-1. 

• In section 4.2, the field equations are expanded in the co-moving orthonormal coordinate 

basis. The student will see the resultant equations group into evolution equations, constraint 

(Codacci) equations and conservation laws, characterized in Table 4-2 and Table 4-3. The 

Codacci constraints involve only partial derivatives that lie in a surface transverse to the flow 

of proper time. 

• In section 4.3, the field equations are expanded in more detail in the player fixed frame 

model, producing the results listed in Table 4-4, Table 4-5 and Table 4-6. The student will see 

the origin of Maxwell like equations as well as new equations reflecting the tidal forces of the 

model. 

• The student will learn new distinctions based on the field equations of decision process 

theory from section 4.4. In particular the student will be able to identify the persistency 

associated with players, electromagnetic like fields associated with payoff fields, inertial 

fields associated with orientation flux fields and new effects associated with such tidal fields. 

• The various distinctions and their related field equations are brought together in section 4.5 

under the quasi-stationary hypothesis to provide a basis for harmonic solutions along 

streamlines. These solutions are electro-gravitational waves of decision process theory. On 

the transverse surface, the resultant equations are partial differential equations that are 

mathematically similar to those of electromagnetic theory. The student should gain an 

appreciation of how these equations might be solved. 

• In section 4.5.7, these equations are coupled partial differential equations, which can be 

solved numerically using the method of lines and work for any number of active strategies, 

inactive strategies or players. The equations may be solvable using lattice techniques, though 

that has not yet been investigated. 

• In section 4.6, these equations are specialized to a single active strategy where the equations 

that need to be solved are coupled ordinary differential equations that fall easily into the 

category of equations that can be solved using current computing techniques. 

4.8 Exercises 

1. Show that the Fermi derivative as defined in Eq. (4.2) leaves the co-moving orthonormal metric 

(which is Minkowski) unchanged. 
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2. Provide the frame equations in the player fixed frame model starting from Eq. (3.62). 

3. Derive the time dependence of the charge, Eq. (3.59). 

4. Derive the space dependence of the charge gradient, Eq. (3.69). 

5. Demonstrate that the differential of the mixed 1-form potential is: 
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6. Use Eq. (4.113) to show that the mixed curvature 2-form is: 
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7. Extract the following curvature tensor components from Eq. (4.114): 
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8. Use Eq. (4.7) to show that the transverse components of the 1-form potential have the following 

differential 2-form: 
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9. Use Eq. (4.116) to show that the transverse curvature 2-form is: 
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10. Extract the following curvature tensor components from Eq. (4.117): 
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αβδγ ε ε
γ αβδ αβε γδ αγ αγ βδ βδ εαγ βδ αβ δγ

ω ω θ ω θ ω θ ω

φ φ ω φ ω φ φ ω

ω ω ω θ ω θ ω ω ω φ ω

ω ω ω θ ω θ ω ω ω φ ω

α β γ

 ∆ + + + + − +
 =
 +∆ − + + − 

 ∆ + − + + − +
 =
 −∆ − + + + + + 

, ο≠�

 (4.118) 

11. Use Eq. (4.118), (4.115) and the symmetry relations R Rαβογ γοβα=  to establish the time evolution 

of the transverse orientation potentials: 

 

( ) ( )

( )
( ) ( )

| |

2

, , ,

q q q q

ε ε ε
γβ γβ αγ αγ αεγ β αε βγ αβε γα β

ε ε
ο αβγ αβε γ γ

β αγ αγ α βγ βγ γ αβ γ αβ γ αβ

θ ω θ ω ω φ φ ω ω φ

ω ω θ ω

θ ω θ ω ω φ φ

α β γ ο

 − + + − − + −
 
 ∆ = − +
 
  − + + + + − ∆ +
 

≠�

 (4.119) 

12. Use the symmetry relation R Rαβδγ δγαβ=  and Eq. (4.118) to obtain the constraints that are spatial 

partial differential equations for the orientation potentials: 

 

2 2 2 2 2 2
0

, , ,

δ αβγ γ αβδ α δγβ β δγα

αδ βγ αδ βγ αγ βδ αγ βδ αβ δγ δγ αβ

ε ε ε ε
αβε δγ δγε βα αβε γδ αβ δγε

ε ε ε ε
εαδ βγ εαγ βδ εδα γβ εδβ γα

ω ω ω ω

ω θ θ ω ω θ θ ω φ ω φ ω

ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω

α β γ ο

∆ − ∆ − ∆ + ∆ 
 

− − + + + − 
= 

+ + − − 
 − + + − 

≠�

 (4.120) 

13. Show that multiplying Eq. (4.120) by m
δβ  gives: 

 ( )

2 2 2
0

2 2

, , ,

δ δ δ δ δ δ
δ βα δ αβ β αδ α βδ α δβ α δβ αβ

δ ε ε δ δ
εδ αβ βα αδ β α δβ

ω ω ω ω ω θ θ ω ω θ

ω ω ω φ ω ω φ

α β γ ο

 ∆ − ∆ + ∆ − ∆ − − +
  =
 − − + − 

≠�

 (4.121) 

14. From the form of the energy momentum tensor Eq. (2.74) demonstrate that: 

 
2

,

h R R
αβ

αβ οο κµ

α β ο

− =

≠
 (4.122) 

15. Use Eq. (4.122) and the contracted forms for the curvature tensor to show: 

 

21 1 1 1 1
2 2 2 2 2

, , ,

αγα α β β αβ γ α βγ α β
α γ β α β α γ βα βα γ β αω θ θ θ ω ω ω ω ω ω φ ω κµ

α β γ ο

∆ + − − + − + =

≠�
 (4.123) 

16. Use Eq. (4.123) to show that Eq. (4.13) and the “trace” of Eq. (4.17) are consistent. 

17. Derive Eq. (4.21) from Eq. (4.20). 

18. Prove that if the “curl” and “divergence” are known, then the fields are determined. Use the 

Cauchy-Kowalewsky existence theorem (Courant & Hilbert, 1962, p. 39). 

19. Check to see whether the conditions Eq. (2.71) in the co-moving orthonormal coordinate basis 

provide any new restrictions. Since we have already checked each of the symmetry conditions Eq. 

(2.72), use the fact that we only need to check the cyclic tensor Eq. (2.73) and derive the forms 

below to show that no new constraints result: 
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αβε εαβ γδ δγ αγε εαγ δβ βδ

αβγδ ε ε
αδε εαδ βγ γβ

αβ αβ αβ γδ αγ αγ αγ δβ αδ αδ αδ βγ

α βγ β γα γ αβ α

οαβγ

α β γ δ ε ο
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ω ω ω ω

θ ω φ ω θ ω φ ω θ ω φ ω

ω ω ω

≠

 ∆ − + ∆ − + ∆ −
 
 + + − + + −
 =
 + + −
 
 + + + + + + + + + 

+ + + ∆
=

( ) ( ) ( )
βγ β γα γ αβ

δ δ δ δ δ δ
αδ γβ βγ βδ αγ γα γδ βα αβ

ω ω ω

ω ω ω ω ω ω ω ω ω

+ ∆ + ∆ 
 
 + − + − + − 

 (4.124) 

20. For any scalar field ϕ , prove that in the co-moving basis, | |υυ υ υϕ ϕ′ ′=  and hence for the player 

fixed frame model:  

 ( )2 e
α

υ υ υ υ υυ α υυ οϕ ϕ ω ω ϕ′ ′ ′ ′∆ ∆ − ∆ ∆ = − ∆  (4.125) 

21. For any scalar field ϕ , prove that in the co-moving basis, | |υο ουϕ ϕ=  and hence for the player 

fixed frame model: 

 ( )2q e
α

υ ο ο υ υ υ α οϕ ϕ θ ϕ∆ ∆ − ∆ ∆ = + ∆  (4.126) 

22. Show that for any scalar function ( )ϕ υ  that is a function of the proper-active strategies y
υ  only, 

that such a function is independent of proper time. In particular demonstrate for each coordinate 

that  

 0y
υ

ο∆ =   (4.127) 

23. Show that the gradients of proper-active strategies with respect to proper-active strategies are 

orthonormal: 

 y
υ υ

υ υδ′ ′∆ =  (4.128) 

24. Demonstrate that if there is a scalar function ( )xτ  such that 1οτ∆ = , then we have the following 

commutation relation and implications for any arbitrary vector function ( )aυ υ′  of the proper-

active strategies: 

 

( ) ( ) ( )2 2

2

2

q e q e

a

q e

α α
ο υ υ ο υ υ α ο υ υ υ α

υ υ υ

α
υ υ υ α

τ τ θ τ θ

τ λ τ

λ θ

∆ ∆ − ∆ ∆ = − + ⇒ ∆ ∆ = − +

⇒ ∆ = −

= +

 (4.129) 

25. Using exercise 24, show the following relationship between the differential operators ο∆  and υ∆  

with the partial derivatives τ∂  and υ∂  when operating on a scalar function ( ) ( )( ),y x xϕ τ : 

 
( )2a

ο τ

υ υ υ υ τ

ϕ ϕ

ϕ ϕ λ τ ϕ

∆ = ∂

∆ = ∂ + − ∂
 (4.130) 

26. Starting with a power series expansion for the coordinate a
x  in terms of the scalar function τ  

defined in exercise 24 and coefficients 
a

nX  that are functions only of the scalar fields y
υ

 (which 

are scalar functions of the harmonic coordinates), use the commutation rule result (4.129) to 

show the expansions for the vector fields 
a

E ο  for the flow and 
a

E υ  for the active transverse 

directions, defining the scalar field 2q e
α

υ υ υ αλ θ= + : 
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ο
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τ

τ

τ λ τ τ

=

−

=

−

= = =

=

=

= ∂ − +

∑

∑

∑ ∑ ∑

 (4.131) 

27. Use exercise 20 to show the first commutation rule of Eq.  (3.60) is satisfied: 

 ( )2a a a a a
E E x x q e E

α
υ ο ο υ υ ο ο υ υ υ α οθ∆ − ∆ = ∆ ∆ − ∆ ∆ = +  (4.132) 

28. Use exercise 20 with the scalar τ  and the assumption that the scalar fields are static to show that 

aυ  is constrained by the magnetic and tidal magnetic fields and that the curl of υλ  must be zero: 

 

( )
( ) ( )

2

2 2 2 2 2

0

e

a a a a e

a a a a e

α
υ υ υ υ υυ α υυ ο

α
υ υ υ υ υ υ υ υ υ υ υ υ υυ α υυ

α
υ υ υ υ υ υ υ υ υυ α υυ

υ υ υ υ

τ τ ω ω τ

λ λ λ λ τ ω ω

λ λ ω ω

λ λ

′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′

∆ ∆ − ∆ ∆ = − ∆

∆ − ∆ + − + ∆ − ∆ = −

∆ − ∆ + − = −

∆ − ∆ =

 (4.133) 

29. Use exercise 20 to show the second commutation rule of Eq. (3.60) is satisfied with the vector 

field aυ  satisfying Eq. (4.133): 

 ( )2a a a a a
E E x x e E

α
υ υ υ υ υ υ υ υ υυ α υυ οω ω′ ′ ′ ′ ′ ′∆ − ∆ = ∆ ∆ − ∆ ∆ = −  (4.134) 

30. Show that the co-moving coordinate basis field equations from section 4.4 for the player fixed 

frame  model satisfy the normal-form coordinate basis longitudinal flows, Eq. (1.75) and (1.76), 

modified to include the inertial acceleration: 

 
1

2
b b c k b jk

ab abc k ab j k a a

k k

g V V V V F V V V q

V q

ο

ο

ϖ γ∆ + = − ∂ +

∆ =
 (4.135) 

31. Show that imposing a gauge condition, such as the following, on the vector field aυ  in Eq. 

(4.133) corresponds to a frame transformation, taking the most general form of υλ  to be qυ υλ = ∂  

in terms of a scalar field: 

 ( )e 0q
a

υ
υ∂ =  (4.136) 

32.  Show that the “curl” of the new characteristic vector potential field 2eq
aυ−  from Eq. (4.133) 

simplifies and determines the characteristic payoff  and acceleration fields. Show that the field 

equations for the “curl” of the magnetic fields satisfy these equations and further, show that with 

the gauge from the previous exercise, the vector field depends on the player current in the second 

order differential equation shown below: 

 

( ) ( ) ( )

( )
( )( )

( )

e e e

0

e e
2 2 2

q q q

q q

a a e f

f f f

e p e q
a

e q e

α
υ υ υ υ υυ α υυ υυ

υ υ υ υ υ υ υ υυ

α α υ υ
αυ υυ αυυυ

υ υ υ α υ υ αβ
υυ α αυυ υυ αυυ β

ω ω

κ ω ω

ω ω ω ω ω ω

′ ′ ′ ′ ′

′ ′′ ′ ′′ ′′ ′

′ ′
′ ′′−

′ ′ ′ ′
′ ′ ′ ′

∂ − ∂ = − ≡

∂ + ∂ + ∂ =

 + − Θ +
 − ∂ ∂ =
 + − + − 

 (4.137) 

33. Verify Eq. (4.91) and (4.92). Use these equations to determine the general form of the power 

series in terms of the initial functions 0

a
X  and 1

a
X : 
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 −∂ ∂ + + + ∂
 
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 =
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 
 − + ∂ 

(4.138) 

34. Show that the partial differential equation corresponding to the wave equation Eq. (4.90) is: 

 
( ) ( )

( ) ( )

2 21 4 4 2 2
0

2 6 2

a a a

a a

e e a a a q q q x x a q x
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 + + − + ∂ + ∂ ∂ + − ∂ ∂
  =
 + − − + − ∂ + ∂ − + ∂ 

 (4.139) 

35. Use the power series solution to show that the wave equation Eq. (4.139) has polynomial 

solutions ( ),a

N
P υ τ  with 1 2 0a a

N N
X X+ += =  and show that the order of solving for the 

coefficients starts with the equation for 
NX  and then equation for 1

a

N
X −  using this solution and 

so forth: 
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4 1 2 1 2 3 0
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a
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a a

n n
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 
 
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 
 + + + + + 

(4.140) 

36. For the single active strategy streamline solutions of section 4.6, show that the inertial forces, 

Table 4-6, provides the diagonal components of stress, Eq. (4.35): 

 1 1
2 2 0

1

p
q p ph h

n

υβ α α α υα υα β α υβ
β υ α α α υα β υα υα β

µ
ω κ µ ω ω ω ω ω ω

− 
− + − − + + + − = 

− 
(4.141) 

37. For the single active strategy streamline solutions of section 4.6, show that the inertial forces, 

Table 4-6, provide the divergence of the acceleration field given by Eq. (4.58). 

38. For the single active strategy streamline solutions of section 4.6, show that Eq. (4.109) can be 

used to determine the divergence of the bond compression:  

 1 1
2 23υβ υα αυ β α βυ

υ β υα β υα υα βω ω ω ω ω ω ω κµ∂ = + + −  (4.142) 

39. For the single active strategy streamline solutions of section 4.6, using the divergence of the 

acceleration Eq. (4.111), show that the harmonic wave equation Eq. (4.105) can be expressed as: 

 

( )

( )

2 2
1 2

0
2

1

a a a

a a

e e q q x x q x

p
q q p x q x
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α υ υ υ
α υ τ υ υ τ

υ υα υ υα
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µ
ω ω κ µ τ ω

 + + ∂ + ∂ ∂ − ∂ ∂
 

=  − 
+ + − + − ∂ − + ∂   

−   

 (4.143) 

 

40. For the single active strategy streamline solutions of section 4.6, using the divergence of the 

acceleration Eq. (4.111), show that the harmonic polynomials Eq. (4.106) can be expressed as: 
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 (4.144) 

41. In exercise 25, we express the frame derivatives { }ο υ∆ ∆  in terms of holonomic partial 

derivatives { }τ υ∂ ∂ . In effect we have made a frame transformation from the co-moving 

orthonormal coordinate basis to the central holonomic frame. We include in the definition of 

central holonomic frame a redefinition of proper time eqτ τ=  (which is just a scale change along 

a streamline). Show that the transformation W W W
µ µ µ

ο α υ  from the co-moving orthonormal 

frame to the central holonomic frame has the following values for central holonomic frame 

coordinates { }kµ τ υ= , where the first two coordinates are active and holonomic and the 

last coordinate is inactive and non-holonomic: 

 

e e 2 e

0 0

0

q q q

k k k k k

W W e W a

W W W

W E W E W

τ τ τ
ο α α υ υ

υ υ υ υ
ο α υ υ

ο ο α α υ

δ

= = =

= = =

= = =

 (4.145) 

42. Show that the transformation { }W W W
ο α υ

µ µ µ  from the central holonomic frame to the co-

moving orthonormal frame has the following values and is the inverse of the transformation Eq. 

(4.145):  

 

e e
0

1 1

2 2

1 1

0

q q

k k k k k

e
W W W

e e e e

a a
W W e W

e e e e

W E W E W

α
ο α υ

τ τ τα β
α β

ο α α υ υυ υ
υ υ υ υα β

α β

ο ο α α υ

δ

− −

= = =
+ +

− −
= = =

+ +

= = =

 (4.146) 

43. Using the frame transformations from exercise 41, show that the following provide the frame 

transformation E
µ
µ  from the normal-form coordinate basis to the central holonomic frame basis. 

In addition show that the inverse frame transformation E
µ

µ  is as indicated below. 
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 (4.147) 

44. In the central holonomic frame, show that the inactive metric elements jk jk
γ γ=  are equal to the 

corresponding inactive metric elements in the normal-form coordinate frame, show that the 

mixed metric elements 0
kb

g =  are zero and show that the active contravariant metric elements 

ab
g  have the values given below. Furthermore, show that the determinant of the active metric 

elements are as indicated: 

 

( )
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2

2

1 4 e 2 e

2 e

det 1 e

q q
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g e e a a g a

g a g

g e e

ττ α υ τυ υ
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α
α
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= + + =

= = −

= +

 (4.148) 

45. In the central holonomic frame, show that the active covariant metric elements are: 

 

2 2 ee

1 1

2 e 4

1 1

qq

q

a
g g

e e e e

a a a
g g

e e e e

υ
ττ τυα α

α α

υ υ υ
υτ υυ υυα α

α α

δ

−−

−
′
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= = −
+ +

= − = − +
+ +

 (4.149) 

46. Using the fact from exercise 45 that the metric elements in the central holonomic frame are 

independent of central time τ , show that central time is indeed central (Thomas G. H., 2006), 

i.e. it is inactive and commutes with all inactive strategies. Furthermore show that the curl of the 

slightly redefined characteristic potential 2 eq
aυ−  determines the characteristic payoff 

( )2 2eq
f f e

α
υυ υυ υυ α υυω ω′ ′ ′ ′= − = − − , Cf. Eq. (4.137).  

47. Use the frame transformation to obtain the player payoff matrices in the central holonomic frame, 

considered as tensors in the space of time and active and inactive strategies: 

 

e

2 2

0

j q j

j j j j

j j j

k k ik

F f

F f a f a f

F F F

υτ υο

υυ υυ υ υ ο υ υο

τ υ

−
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=

= + −

= = =

 (4.150) 

48. Based on the form of the payoff matrix Eq. (4.150) in the central holonomic frame and using the 

definition Eq. (3.30) transformed to the central holonomic frame, show that the payoff matrix for 

the active components is the curl 
j j j

a aab b b
F A A= ∂ − ∂  of some potential function 

j

a
A  by showing: 

 0j j j

a ca cbc b ab
F F F∂ + ∂ + ∂ =  (4.151) 

49. To determine the potential function 
j

a
A  implied by exercise 48, both the curl and divergence need 

to be specified. Show that the gauge condition 0ab j

a b
g A∂ =  in the normal form coordinate frame, 

which we call the harmonic gauge for the vector potential (Thomas G. H., 2006) , can be 

expressed in the central holonomic frame by establishing the following relations, where the 

covariant derivatives are here restricted to active components only: 
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 (4.152) 

50. Show that in the central holonomic frame the active flow components are 

{ }, 0q
V W e V W

τ τ υ υ
ο ο= = = =  and the inactive flow components are 

k k k
V W Vο= = . If we 

call the covariant-flows the “momenta”, show that these momenta are 

2e
,

1 1

q a
V V

e e e e

υ
τ υα α

α α

− 
= = − 

+ + 
 for the active components and 

k k
V V=  for the inactive 

components. This shows that aυ  contributes to the momentum. 

51. Show that in the central holonomic frame the acceleration components are 

{ }2 e ,q
q q a q q

τ υ υ υ
υ= = . The covariant components (the “forces”) are 

{ }0, , 0
k

q q q qτ υ υ= = = . These acceleration components are for the full geometry of active 

and inactive coordinates. We can define the active geometry acceleration in frame in which the 

active coordinates are holonomic and in which the inactive coordinates are orthogonal using only 

the active acceleration, illustrated for the central holonomic frame in the first equation below. 

Show that in that frame, the active geometry acceleration consists of three contributions, shown 

in the second equation below. The first contribution is the competitive acceleration, the second is 

the cooperative acceleration and the third is the absolute acceleration. Show that the active 

geometry acceleration in the central holonomic frame is given by the third and fourth equations. 

Also show the identity of the active geometry acceleration as computed from the first equation 

and computed from the sum of the three contributions. In the process show that the competitive 

acceleration and cooperative acceleration have the forms provided in the last two equations. You 

will also have demonstrated that the three acceleration contributions are each independent of 

proper time as is the active geometry acceleration in the central holonomic frame.  
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q e e e e e e e e e
E E

e e

τ

α α β
υ υα υαβ

υ
α

α

γ γ α α β
υ γ γ υα υαβ

ο υο
γ

γ

γ β α γ α β
υ γ β υα γ υαβ

ο ο υ
γ

γ

ϖ

γ

ω ω

ω ω

ω ω
γ

= ∂ +

= + ∂ +

=

+ +
=

+

− − − +
=

+

− + −
∂ =

+

 (4.153) 

  

52. Using exercise 51 for the active geometry acceleration in the central holonomic frame and the 

transformation properties exercise 43, show that the active geometry acceleration in the normal-
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form coordinate basis is 
a a

Q E Q
υ

υ= . So in particular the time dependence is provided entirely 

by the transformation 
a

E
υ

. Furthermore, show that the covariant magnitude of this acceleration 
ab

a b
g Q Q  is Q Q

υυ
υ υδ ′

′−  and so a scalar independent of proper time: like the pressure p , energy 

density µ  and cooperation potentials jk
γ , the covariant magnitude is constant along a streamline. 

Show that for any scalar ϕ  that is constant along the streamline, the gradient is 
a a

E
υ

υϕ ϕ∂ = ∂  

and so show that in the normal-form coordinate basis such scalars will in general be time 

dependent if there are non-trivial harmonics. 

53. In our initial numerical analysis (Thomas G. H., 2006), in addition to an exactly solved single 

strategy model, we computed a variety of examples in which all strategies were active. In these 

models, we assumed that there was a central holonomic frame in which time was inactive and 

commuted with all active strategies. For the player fixed frame model with the quasi-stationary 

hypothesis, we satisfy that assumption (exercise 46). We also made several practical 

simplifications to evaluate these models: for example we did not use the field equations to obtain 

the metric and payoff tensors, but estimated their behaviors; we averaged the player payoffs, 

which set the value of the characteristic payoff since we assumed the composite payoff was zero 

and the frame was fixed; and we assumed that the relationship between energy density and 

pressure was that of a perfect fluid. In this chapter with the player fixed frame model with the 

quasi-stationary hypothesis, we have removed those simplifications and estimates and provided 

exact solutions. In particular we have explicitly kept each player’s inactive strategy (no common 

inactive strategy) and don’t assume that the composite payoff is zero. Show that the normal-form 

coordinate basis behaviors seen from that initial numerical analysis now follow directly from the 

free fall behavior of 
a

E ο  (Cf. section 11.5). Show that the gradient of the pressure and the 

gradient of the cooperation potentials jk
γ  are computed from 

a
E

υ
 (exercise 52). 

54. Show that the wave equation Eq. (4.90) in the central holonomic frame is transformed from the 

partial differential equation Eq. (4.94) to the following partial differential equation in which the 

coefficients are all independent of the central time τ : 
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4 e 2e
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ω ω

′
′

 + + ∂ − ∂ ∂
  =
 + ∂ ∂ − + ∂ − + ∂ 

 (4.154) 

55. Show that one can apply the phasor approach directly to the partial differential equation in 

exercise 54, namely one can superpose solutions of the type ea a i
x x

ωτ
ω=  where the phasor 

component 
a

xω  satisfies the following equation that is independent of the central time: 
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 + + − ∂ 

 (4.155) 

56. Show that the equation in exercise 54 also has linear solutions: 
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 (4.156) 

57. The solutions in exercise 55 of the wave equation are in terms of complex numbers. Show that the 

solutions can also be written in terms of sines and cosines as the two coupled sets of differential 

equations below. Note that the freedom to choose the coefficients rests entirely in specifying the 

boundary conditions. Once the boundary conditions are set, the remaining behaviors are coupled 

as shown. 
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58. An estimate of the behavior of the solutions to the phasor equations is that the coefficients are 

constants in exercise 55 and the phasor solution is a wave e
k ya

x
υ

υ

ϖ = . The values for example 

could be the initial values and the assumption is that they change slowly with position. Show that 

the propagation vector kυ  satisfies the following algebraic equation. Discuss solutions to this 

equation if the propagation vector were entirely along a single axis. 

 ( ) ( ) ( )2 24 e e 1 4 2 e 0q q q
k k q i a k e e a a i a q

υ υα υ υ α υ υα υ
υ α υ α υ υ αω ϖ ϖ ϖ ω− + + − + + + + + = (4.158) 

59. As a crude estimate to the solution for the propagation vector in exercise 58, assume that the 

initial conditions are that 0q a
υ υ= =  and that the propagation vector is along a single direction 

z  with magnitude k k
υ

υγ = − . Show that the equation and solution are below. Infer that for 

sufficiently small frequencies there are two solutions to the wave equation, which have no 

oscillations and are attenuated along the z+  direction or along the z−  direction. Show that for 

sufficiently high frequencies there will be a travelling wave, but one that is still attenuated in 

general. Write the propagation magnitude as iγ α β= +  and show that the velocity of the wave is 

ϖ β . What is the velocity of the wave for sufficiently large frequencies? The source of the 

attenuation in both cases is the presence of a non-zero compression 
zα

αω . Discuss whether these 

insights will carry over to solutions that take into account the spatial dependences.  
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1 0
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z
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ω ω ω ϖ
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60. For the single strategy model, show that the wave equation (exercise 54) simplifies to: 

 ( ) ( )2 2e 1 0a q a a
x e e x q x

υυ α υα υ
υ υ ϖ α ϖ α υ ϖδ ϖ ω′

′∂ ∂ + + + + ∂ =  (4.160) 

61. In the central holonomic frame the player payoff fields are determined by a current, Eq. (3.14). 

Show that the current components are given in terms of the following expressions involving the 

co-moving orthonormal scalars: 

 
e 2e

j j

q q

j j j

p E p

p E p e E a p

υ α υ
α

τ α β α υ
αβ υ α

=

= +
 (4.161) 

62. Show that the gauge condition implicitly chosen in the central holonomic frame is 

 0
ab

b
g∂ =   (4.162) 

63. Assume that there is a Killing vector K V
µ µφ=  proportional to the flow V

µ
 that commutes with 

all the inactive central strategies, those that mutually commute with each other. Show that these 

mutually commuting set of Killing vectors, along with the remaining active coordinates form 

coordinate potentials that can be defined for all coordinates and form the central holonomic 

frame. Show that this frame is co-moving, but not orthonormal in general. Transform to a new 

frame, the active-co-moving frame, in which only the active spatial flow components are zero 

using the transformation below and show that the form of the line element is as stated below. 
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Structurally there is no difference in form between the central holonomic frame or the active-co-

moving frame.  
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  (4.163) 

64. Show that the choice of gauge does not impact physical quantities. Thus the curvature tensor and 

energy momentum tensor are not changed by the gauge choice. If they display time dependence 

then the time dependence is gauge independent. In particular, show that if there is a time like 

Killing vector proportional to the flow, then if we solve the equations for the metric in the active-

co-moving frame with the gauge Eq. (4.162), we can then use Eq. (4.156) to obtain the solution of 

the initial problem in the harmonic gauge. In this case show that the curvature and energy 

momentum tensors will be stationary. 

65. Articulate the central frame stationary hypothesis as the statement that in the central holonomic 

frame in which the active strategies are holonomic and the active metric components are 

orthogonal to the inactive metric components, one of the central inactive metric components is 

time. By constructing the stationary orthonormal coordinate basis that starts with the central 

time, show that the orientation potentials in this basis are stationary. Show that in general this 

basis will not be the same as the co-moving orthonormal coordinate basis. Show that the key 

difference occurs when the central holonomic frame active flow is not zero. Show that there is a 

transformation from the normal-form coordinate basis to the central-form coordinate basis that 

respects the holonomic character of the active components and transforms the inactive and active 

components independently. Use this to show that we may take the inactive components to be the 

same in the two bases. The transformation from the central holonomic frame coordinate basis in 

which the metric is independent of time to the normal-form coordinate basis can be accomplished 

with the harmonic gauge transformation Eq. (3.13) written in the central holonomic frame, 

; 0a
x

µν
µνγ = . Conclude that the most general model assuming the central frame stationary 

hypothesis is one that starts in the central holonomic frame for a stationary metric and solves the 

associated field equations for that (active strategy) holonomic system. Eq. (4.154) is a special 

case of this. 

66. We have a complete set of equations that appear to have one additional constraint that has not 

been dealt with, Eq. (4.53). Show (or disprove) that this equation is identically satisfied as a 

consequence of the field equations. 

67. It is a standard result that for the ownership model, Eqs. (4.79) can be solved in terms of a 

potential, p pυα υ α= ∂ . Show that this is also true for the conductivity model, with the addition of 

an integrating factor. Show that the integrating factor can be obtained in terms of the acceleration 

potential and the transverse compression potential. Show that the gradient term is modified as 

shown. You will have to make use of the fact that the compression matrix commutes with its 

gradient to show that there is a single matrix integrating factor that works for all stresses pυα . In 

the matrix form of the equation (here we use bold to indicate a matrix), show that the form is as 

shown.  
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68. Assume we start with the potential e
q

A aυ υ=  and its equation of motion Eq. (4.137). Assume 

that further we have the gauge conditions 0A
υ

υλ = ∂ =  and 0υλ∂ = . Show using the equations 

of motion from the full set of field equations that we have 0
υ

υ λ′
′−∂ ∂ = , and so if the gauge 

conditions are satisfied on a surface they are satisfied everywhere. That means we only have to 

solve the equations for the potential: 
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69. Assume that we have the assumptions stated in exercise 68 and that z  is a coordinate direction 

that is constant on the initial surface. Show that the gauge condition 0zλ∂ =  and the equations 

of motion leads to the following equations, which form an elliptic partial differential equation on 

the initial surface. 
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70. The technique of using an integrating factor can also be applied to the equations of motion for Eq. 

(4.30), so that for any set of vector potentials bβυ  and for the matrix function Bλ  determined 

below, this equation is always satisfied.  
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71. Continuing with the vector potentials from exercise 70, show that the equations of motion Eq. 

(4.77) can  be determined with gauge conditions 0b
υ

α αυΨ = ∂ =  and 0υ α∂ Ψ =  defined on the 

surface: 
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72. Show that for exercise 71 and an initial surface defined by a coordinate axis z  being constant, the 

elliptic partial differential equations on the surface for the gauge condition are: 
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73. Discuss the significance of the source term and using exercise 67, show that the passion source 

term is a scalar multiple of the gradient pυ β∂ . So in a sense, this conductivity model gradient is 

as related to ownership as is the one in the ownership model. 

 

 


