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5 Prisoner’s Dilemma: a code of conduct application 
We have now completed the first part of the book in which we have provided an in-depth 

development of decision process theory. In this next part of the book, we inquire into the nature of this 

theory. We focus on the stationary wave aspects as well as delve deeper into the connection of the theory 

to earlier game theory descriptions. In this chapter we start with the prisoner’s dilemma with a single 

active strategy and three additional codes of conduct. In the next chapter, we consider an even simpler 

game with a single active strategy and no codes of conduct, the Robinson Crusoe scenario, and discuss a 

taxonomy or organization for the theory. In chapter 7 we set the context of these examples with a general 

review of game theory and recent economic approaches. 

Before starting this chapter, recall that in section 1.4, we introduced the prisoner’s dilemma and noted 

its connection to game theory. The theory developed in the intervening chapters substantially diverges 

from its game theoretic origins. It is our goal here to show this by quantitatively analyzing the choices 

prisoners face using the player fixed frame model. This application highlights how far we have come 

theoretically from our starting point and demonstrates how the approach from the last chapter can be 

applied to give new insights.  

For example, we argue that the player fixed frame model applied to the prisoner’s dilemma 

demonstrates the stability of solutions that rest on an adopted code of conduct (section 7.2) of the players, 

which we believe is an important departure from game theory. In this sense the prisoner’s dilemma is our 

“hydrogen atom” for decision process theory since it provides an important and solvable model, just as 

the “hydrogen atom” provides an important and solvable theory for classical and quantum mechanics in 

physics. The prisoner’s dilemma is an example of a contract (exercise 5), which forms the basis of the 

invisible hand (Smith, 1776). 

The prisoner’s dilemma has been extensively investigated by game theorists since the late 1950s. The 

common sense solution to the prisoner’s dilemma is to argue that the situation is an example of the 

tragedy of the commons (section 7.2). The tragedy occurs when both prisoners take from the commons, 

causing both to suffer. However, this tragedy of the commons is avoided if the prisoners adhere to a 

common code of conduct, which in this case would be to remain silent when questioned. We demonstrate 

that codes of conduct are natural attributes of decision process theory. They come into being whenever we 

identify strategies as inactive.  

The solutions that result from the field equations can be proved to have a mathematical stability 

because small changes to the initial conditions, whether or not the initial symmetry conditions are 

maintained, lead to small changes in the behaviors of the solutions. The result is a consequence of the 

differential geometry for Einstein type hyperbolic partial differential equations (Hawking & Ellis, 1973, 

p. 254).  

We observe that structural stability is also important and distinct from mathematical stability. 

Whether a bridge stands or falls, the laws of physics provide a mathematical stable description; but for it 

to stand we require the bridge to be structurally stable. Since the player fixed frame model with the quasi-

stationary hypothesis has some similarities to a bridge in that there are significant stationary aspects to 

both, we will also have occasion in our discussion to speculate on whether or not our solutions are also 

structurally stable. As with bridges we look for the tell-tale creaks and groans from the stresses and 

strains to imagine what might happen if our mathematical assumptions about the stresses were to break 

down.   

The chapter is organized as follows: we start with a discussion of the relevance of altruism and 

egotism (section 5.1), followed by analyzing the prisoner’s dilemma into normal form (section 5.2). We 

then provide an equivalent formulation of the initial conditions (section 5.3) and introduce the code of 
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conduct distinction into the theory (section 5.4). We turn then to solutions based on known behaviors 

(section 5.5), which describe the initial conditions. A key insight from the past chapters is that the theory 

has stresses (section 5.6) and strains (section 5.7), which are addressed next, followed by a discussion of 

the other major characteristic of the theory, its persistent behaviors (section 5.8). We then discuss 

dynamic behaviors (section 5.9) and end with a sensitivity analysis (section 5.10) and a summary of 

normal-form behaviors (section 5.11).  

5.1 Egoists and altruists 

The results in this section extend previous work, (Thomas & Kane, 2008) and (Thomas & Kane, 

2010), which applied a single strategy player fixed frame model to the prisoner’s dilemma. They modified 

the forms for the payoffs introduced below in Eq. (5.3) and (5.4), to this model. We shall see that 

reducing the number of strategies in this way to a single active strategy is equivalent to choosing a code of 

conduct (section 7.2). In this case, public-interest supplements self-interest.  

These authors found similarities to the decision process theory with the incomplete games proposed 

by (Harsanyi, 1967-1968), in his trilogy on game theory. The decision process theory here goes one step 

further than Harsanyi in proposing that actions are characterized not only by payoffs, but by inertia and 

charge. As with physical systems, inertia implies that there must be enough force to overcome inertia in 

changing a system from a given course. Ordinary payoff forces—i.e., the forces that arise from one’s 

beliefs and past experiences—may not be sufficient. The second is the property of charge. In their model 

of public goods games, (Eshel, Samuelson, & Shaked, 1998) described players (subjects) as either egoists 

(who maximize self-interest) or altruists (who maximize other-interest). In contrast, (Thomas & Kane, 

2010) suggested that Eshel et al.’s egoist/altruist distinction corresponds roughly to a well-known and 

empirically-tested distinction made in psychology regarding independent and interdependent worldviews. 

They refer the reader to (Markus & Kitayama, 1991) for an extensive review. The suggestion is that 

subjects who possess independent worldviews correspond roughly to Eshel et al.’s egoists, while subjects 

with interdependent worldviews correspond roughly to altruists. Based upon this insight, the suggestion 

was to incorporate the independent/interdependent distinction and liken it to the physical property of 

charge.  

We feel that a more satisfactory conclusion (section 7.2) is that the worldview of independence is 

associated with the players’ inactive strategy whereas interdependence is associated with a code of 

conduct that treats as inactive what would otherwise be active strategies. We associate charge (section 

7.6) with the player’s interest flow, which we characterize as either that of a giver or taker. This has some 

of the same sense of the above mentioned authors, though we take the words to be more akin to seller and 

buyer or producer and consumer. Alternatively we use the terminology accommodating and greedy for 

positive (giver) and negative charges (taker). We find for the prisoner’s dilemma that the more aggressive 

player is greedy (Cf. section 5.8.4).  

Unlike game theoretic approaches, such as (Harsanyi, Games with incomplete information played by 

"Bayesian" players, I-III, 1967-1968), we do not consider separate subjective and objective payoff 

matrices. In decision process theory, each player’s payoff matrix is a personal payoff matrix. That is, each 

player constructs a payoff matrix that represents what that player believes will result as payoffs to him or 

her and all other players. These personal payoff matrices are not public knowledge within the game: each 

player constructs and has access only to his or her own personal payoff matrix. However, players learn as 

the game is played and over time, they come to a more accurate view based on their own outcomes and 

the outcomes they observe for others. It is reasonable that the payoff matrix will in general change over 

time.  

There are two additional properties of personal payoff matrices that are important. First, although 

each personal payoff matrix is private information rather than public information, according to our theory, 

each personal payoff matrix is observable and measurable, though it may not be easy to measure. An 

analogy may be helpful. The field of empirical psychology attempts to understand people’s (and 

occasionally animals’) observable behaviors in terms of mental processes that cause them. These mental 

processes are very difficult to observe, however. The underlying properties of the mental processes are 
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usually not possible to observe under circumstances that present themselves in the everyday world. In 

order to understand mental processes, a person’s environment needs to be controlled in ways that the 

everyday environment usually does not allow (Stanovich, 2004, p. 92):  
“The occurrence of any event in the world is often correlated with many other factors. In order to separate, to pry 

apart, the causal influence of many simultaneously occurring events, we must create situations that will never occur in 

the ordinary world”.  

When the environment is controlled in this way, mental processes suddenly become observable. This 

observation about psychology provides insight to the personal payoff matrices. The personal payoff 

matrices are potentially observable and measurable, but it would be difficult to measure them, especially 

in the context of a game already in play. This is why players’ personal payoff matrices are usually not 

public information within the game. Nonetheless, these personal payoff matrices are still objective and 

measurable. 

The second important property of personal payoff matrices is that each player’s personal payoff 

matrix can be idiosyncratic: that is, the players’ personal payoff matrices do not have to be identical to 

each other and most likely depend on what strategies have just been played. If each player generates his 

or her personal payoff matrix based on his or her past experiences (which are by definition particular to 

each player), then each player will most likely generate a different personal payoff matrix that depends on 

strategy and time.  

In decision process theory, to specify a solution, we provide the initial strategies and initial payoffs 

for each player; the field equations then provide unique solutions. To compare and contrast our results 

with game theory, we choose as our initial strategies those that game theory might propose as the 

equilibrium strategies. We choose as our initial payoff matrices those that game theory might propose. If 

these were to stay the same at all other strategies and all later times, we would recover the game theory 

Nash equilibrium result. To the extent they change we obtain the deviations of decision process theory 

from game theory. 

5.2 Prisoner’s dilemma—the story in normal form 

We now put the prisoner’s dilemma into normal form in this section. We identify the code of conduct 

in section 5.4. From section 1.4 we recall that the essential details of the story are that two prisoners are 

being held for a crime where it is suspected they have acted in concert. Each is given a choice to confess 

or not confess with penalties that are supposed to induce confession of their guilt. However if neither 

confesses they will get off lightly. If both confess they will be penalized but not as severely as the case in 

which one confesses and implicates the other. We are interested in understanding the decision process that 

takes place for each of the prisoners. We note that the game theory analysis argues that the players will 

act only based on their self-interest, which leads each of them to conclude that they should confess. The 

paradox or dilemma is that common sense suggests that there are reasons why both prisoners might 

choose not to confess, yet this choice is absent in game theory. We need to show that both scenarios are 

possible in decision process theory as is also true in real life. The relevant task is to determine the initial 

conditions and what happens next.  

We start with the formulation of the prisoner’s dilemma as a game in normal form between two 

prisoners specified by the following payoffs to player 1.  
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There are identical payoffs to player 2: 
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We suppose that at some initial value of time and at some special strategic point in the strategic space, 

there are quantitative payoffs for the matrix k
G  of possibilities as illustrated above for each player 

{ }1,2k ∈ . We differ from game theory in that these payoffs are not constants for all points of space and 

time.  

At any point in space time, we describe the elements of the matrix in detail for player 1, noting a 

similar description holds for player 2. For player 1, the rows are labeled (C1) if player 1 confesses and 

(N1) if player 1 does not confess. The columns are labeled in a similar manner (N2) and (C2). Our initial 

choices for the payoffs translate as follows. At the initial point of space and time, the payoffs reflect 

quantitatively the posed problem: if both confess, player 1 loses 9
10  units; if both don’t confess player 1 

loses a much smaller value 1
10 . If player 1 confesses and implicates player 2 who does not confess, then 

player 1 loses 0 units. On the contrary, if player 1 does not confess and is implicated by player 2, player 1 

loses 1 unit. At other values of time and space, the payoff values are computed from the player fixed 

frame model, though we have yet to argue why we make the assumption of a single active strategy. 

Though rather simple, the example has several general properties in common with game theory. We 

have payoff matrices and we have mixed strategies. We differ however in our method of computing the 

mix of strategies from which each player picks. In game theory, the mix of strategies is associated with 

equilibrium.  

For example, the payoffs for the two players need not add up to zero; when they do, (Von Neumann 

& Morgenstern, 1944) such zero-sum games have an equilibrium value that is computed as follows. 

Suppose the payoffs Eq. (5.1) for player 1 represented a zero-sum game. The most conservative strategy 

for player 1 would be to determine the minimum outcome for each of its pure strategy choices. If player 1 

chooses (N1), the minimum case is 1− . If player 1 chooses (C1) the minimum is 9
10− . The maximum of 

these two is 9
10− . The most conservative strategy is to choose this max-min. For pure strategy choices, 

there may not always be a max-min solution. What (Von Neumann & Morgenstern, 1944) showed 

however, is that for a zero-sum game with any number of players, each with any number of strategies, 

there is always a max-min using mixed strategies. This equilibrium strategy determines the mix of 

strategies in game theory. For two players for a non-zero sum game, an analogous Nash equilibrium 

determines the mix of strategies. For the prisoner’s dilemma it is that both players choose not to confess. 

They optimize their self-interest by acting defensively. 

To articulate the difference, we don’t argue directly with the individual payoffs such as Eq. (5.1) but 

construct our argument using the symmetric game Eq. (1.12): 
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We identify the “hedge” strategy with time t  and take this payoff to be the value at an initial value of 

time and at an initial strategic point. We construct the similar payoff for player 2, again evaluated at the 

same point: 
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In game theory, it is a property of the Nash equilibrium that the product of the payoff for player 1, Eq. 

(5.3) and the mixed strategy { }00,1,0,1,Nashζ ζ=  is zero. The similar statement holds for player 2. 

Instead, in decision process theory we argue that the mix of strategies is determined dynamically. We 

can pick any mixed strategy for our initial point. Whether or not the initial value changes in time depends 

on the flow equation that replaces Eq. (1.13). In the normal-form coordinate basis, the replacement flow 

equation is determined by Eq. (1.75) and (3.42): 

 1
2

b
b c k b jka

ab abc k ab j k a a

DV dV
g V V V F V V V q E

d

α
αϖ γ

τ τ
= + − + ∂ =

∂
 (5.5) 

We see that there are many sources of change besides the payoff term. Conversely, even if that term is 

non-zero, the other terms can conspire to make the flow stationary. We thus acknowledge the importance 

of self-interest, to the extent we apply that loose concept to the forces derived directly from the payoffs. 

We also must acknowledge the importance of other effects assuming they are not negligibly small. In 

order to understand the size of such other effects we must appeal to model calculations of the various 

conspiracy effects in Eq. (5.5).  

The characteristic of interest for the various effects is the acceleration, which in the co-moving frame 

for the player fixed frame model, has only active components qυ . We see that in the game theory 

approximation, with the initial condition that the acceleration is zero, the acceleration stays zero at all 

other values of time and space. We break this approximation in the player fixed frame model, even when 

the orientation potentials are static. This is because the variation of the acceleration with distance is 

determined by the divergence Eq. (4.58): 

 2
1

p
q p q q q

n

υ υα υυ υα υ
υ υα υυ α υ υ

µ
κ µ ω ω ω ω ω′

′

− 
∂ = + − − − + + 

− 
 (5.6) 

Whatever the origin of the conspiracy effects, we see no direct evidence here that they are caused by the 

payoffs. The results are governed by the inertial, charge gradient and tidal effects. This suggests that we 

may learn a significant amount by considering even the simplest single strategy model in which the 

payoffs (for the effective players of the model) are greatly simplified. We then focus our study of the 

effects of Eq. (5.6), further simplifying it since with a single active strategy there are no tidal magnetic 

effects 0υυω = . 

5.3 Equivalent formulations of the initial conditions 

We now look into various formulations of the prisoner’s dilemma that are equivalent to the game 

theory normal form, section 5.2. In decision process theory, it is useful to identify these equivalent 

models, as they may lead to different dynamic consequences.  For example, the payoffs for each prisoner 

could be scaled by arbitrary factors 
kσ  for each player representing the player stakes in the decision 

process. In our decision process theory, the dynamic behavior is influenced by these stakes, as we show in 

our numerical sensitivity analysis. 

An important extension to game theory is our introduction of the time component 
0

ζ  of the flow, 

which leads to the invariant definition of decision process mass: 

 m
µ ν

µνγ ζ ζ=  (5.7) 
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Nothing in game theory depends on this parameter. If we scale the active and inactive strategies by this 

mass, we obtain the normalized flow components: 

 

a
a

j
j

V
m

V
m

ζ

ζ

=

=

 (5.8) 

We may be used to thinking of the strategies summing to unity for each player, which highlights the 

relative strategic values. Now however, we ascribe meaning to the value of each strategy. The features 

that remain when we scale the strategy to a unit strategy are characterized by the beta β  of the initial 

values: 

 ( ) ( )
2 2

0

1 a j

a j

β ζ ζ
ζ

= +∑ ∑  (5.9) 

The value of beta depends on the active and inactive flow components. For numerical work, if we provide 

a value for β , we obtain 
0

ζ  from Eq. (5.9), defined by the initial strategy flow. The decision mass is then 

obtained from Eq. (5.7). 

Another equivalence normally hidden in game theory is the game value, which does not influence the 

choice of Nash equilibriums. For the prisoner’s dilemma, the active strategy space has four dimensions. 

Since there are two players, the inactive strategy space has two dimensions. The total strategic 

dimensionality is 6n = . The Nash equilibrium for the prisoner’s dilemmas is that both players confess: 

{0,1,0,1, }b

Nash mζ = , where m  can be chosen arbitrarily at this point. An attribute of game theory is that 

the game value does not dictate the strategic possibilities (choice of Nash equilibrium). Typically, one can 

add to each game a constant amount leaving these strategic possibilities invariant. In the symmetric form 

this constant is a matrix:  
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 (5.10) 

We are free to choose any game value. Looking at player 1, we see from Eq. (5.3), that no choice makes 

the time components all zero. We change this for our example. 

Our argument is that in our decision process theory, the time component of the payoff reflects the 

bias that we believe accurately reflects the notion of the game value from game theory. Not every game 

need be fair. We have pointed out that we can add an overall constant payoff Eq. (5.10). It should also be 

possible to frame the prisoner’s dilemma in a way that it too could be put into the form of a fair game. 

The condition is that the time components for each player should be equal and that amount then 

subtracted from each payoff. We achieve this by adding internal payoffs to 
1

ab
F  so that the product 

1 0b

ab Nash
F ζ =  of the payoff and the starting strategy 

b

Nash
ζ  are zero:  
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 (5.11) 
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This payoff plus the constant matrix ( )9
10c −  from Eq. (5.10) reproduces the same payoffs as the sub 

matrix Eq. (5.1). There is an internal payoff or utility for player 1 to choose to not confess of 1
10 . For 

example, without this bias, the return for player 1 for the equilibrium strategy would be negative instead 

of zero. We thus obtain the same strategic behavior as the symmetrized game Eq. (5.3).  

If both players choose to cooperate and not confess (
1 2N N ), then player 1 loses 1

10 . If player 1 

chooses to cooperate and not confess and player 2 chooses to confess (
1 2N C ), then player 1 loses 1 unit. 

If player 1 chooses to confess and player 2 chooses to cooperate and not confess (
1 2C N ), player 1 sees 

maximum benefit and receives 0. Finally if player 1 and player 2 both choose to confess (
1 2C C ), then 

player 1 loses 9
10 . The Nash equilibrium point is the strategy whose product with the payoff is zero.  

In a similar fashion, we choose the payoff for player 2, so that the product
2 0b

ab Nash
F ζ =  is also zero: 
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This payoff plus the constant matrix ( )9
10c +  from Eq. (5.10) reproduces the same payoffs as the sub 

matrix Eq. (5.2). We thus obtain the same strategic behavior as the symmetrized game Eq. (5.4).  

We have defined some of the initial conditions that are needed to specify a complete solution to the 

field equations. Before continuing, it is worth considering the multiplicity of payoffs that are possible, 

which seemingly represent the same strategic situation. We look at the elementary aspects of game theory 

for example and see that the strategic content of a game in normal form does not change if the payoffs are 

all multiplied by a common factor. Similarly the strategic content doesn’t change if a constant is added to 

all of the payoff elements. The max-min rule discussed in section 1.4 yields the same equilibrium 

strategies. If the game is fair, there is no difference between these games. If the game is not fair, the only 

difference is the size of the payoff, which will be modified by the same multiplicative factor or additive 

constant that modifies the individual payoffs. The important question is whether this behavior squares 

with our common sense. It is reasonable to imagine that the strategic choices will in fact be impacted 

significantly if a game with low stakes is made into a high stakes game. In our decision process theory, 

we in fact expect there to be differences. 

The reason for this expectation is that in decision process theory, the payoffs are fields that carry 

energy. The larger the field values the more energy these fields carry. We noted the acceleration flow 

depends on the inertial and orientation flux fields, Eq. (5.6). The acceleration flow is a direct measure of 

changes to the strategic values. The magnetic components in the co-moving basis play no direct role, 

whereas the inertial and charge gradient terms do. We thus have at least one difference between our 

decision process theory and game theory models that can be put to the test. As we develop the player 

fixed frame model for the prisoner’s dilemma, we will study the consequences of different game values by 

changing the initial conditions with additions of constant matrices Eq. (5.10). In the next section we 

introduce the code of conduct and its relationship to inactive strategies.   

5.4 Persistency, variability and code of conduct 

The most general approach to the prisoner’s dilemma (section 5.2) is to start with the four active 

strategies associated with our normal form payoffs Eq. (5.11) and (5.12). To these strategies we add two 

inactive strategies, one for each of the two prisoners. We use the normal form payoffs plus the appropriate 

constant matrix ( )c v , Eq. (5.10) as the initial payoff field value. We use an initial flow value that 

represents the strategic choice we want to study. For numerical solutions, we specialize to the player fixed 
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frame model that has streamline solutions that can be found using the equations from section 4.5 based on 

the quasi-stationary hypothesis. We expect solutions that are both stationary and non-stationary.  

To break out of the prisoner’s paradox, we impose a player code of conduct in which we go from two 

players to five players, three of which collectively choose a single common active strategy. In these 

solutions, we maintain the same initial conditions for the payoffs and strategies. Such solutions will have 

additional persistency that manifests as additional isometries. The method we use to find such solutions is 

to rotate our frame of reference by a constant amount (i.e. an amount independent of space and time). 

Moreover, we suggested from a preliminary look at the behavior of the acceleration gradient Eq. (5.6) that 

some, though not all essential features might be seen in these solutions even though they are less general 

and simpler to study.  

Every possible player strategic choice need not be active. For each inactive strategy x , the associated 

payoff for each player 
j

xb
F  has a form simpler than Eq. (1.73), and provides the payoff in terms of the 

underlying potentials: 

 
j j

xb b x
F A= −∂  (5.13) 

This is because none of the metric or orientation potentials can depend on this strategy. From the 

standpoint of setting initial conditions, we don’t see any difference between a single strategy being 

inactive and none of the strategies being inactive. However, we would expect a difference in the behavior 

along the streamlines. For an inactive strategy, the streamline is conserved, Eq. (1.76) extended to the 

case of a non-zero source (also Cf. Table 4-1): 

 0k

j j

dV
q E q E

d

υ α
υ α

τ
= + =  (5.14) 

For the player fixed frame model, the flow is conserved. This is distinct from the behavior expected for 

active strategies that will be influenced by the rotational effects of the payoff matrix seen in Eq. (5.5). 

Multiple numerical examples are provided of this behavior by (Thomas G. H., 2006). 

If two strategies { }x y  are inactive, in addition to the conservation behavior Eq. (5.14) of these 

strategies along the streamline, there can be no payoff between them: 

 0j

xyF =  (5.15) 

Looking at the payoffs for the prisoner’s dilemma, we see no immediate evidence that this is true 

simultaneously for our initial payoff values Eq. (5.11) and (5.12). There may however be a different basis 

in which this is true. 

 We start with a frame in which for each player one direction is specified by confess (C) and the other 

not confess (N). An equally complete choice would be the sum (C+N) and difference (C-N) of the 

strategies. We label the coordinates { t , 
1ξ , 

2ξ , 
2N , 

2C , 
1N , 

1C } in our initial normal-form coordinate 

basis. We label { }1 2ξ ξ  the player inactive strategies and label time as t . We make two successive 

linear transformations starting with: 
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= −

= −

= +

= +

 (5.16) 

The sum of the strategies for each player, 
1r  and 

2r , represent how often each player plays. They represent 

the player preference scale. The differences 
1s  and 

2s  represent the player relative preference to not 

confess. In this basis, we still can’t choose more than one strategy to be inactive. 

Another equivalent set of strategies is the sum r  and difference u , leaving all other variables 

unchanged: 
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( )

( )

1
1 22

1
2 12

r r r

u r r

= +

= −
 (5.17) 

In this case the resultant payoffs now have a form that is consistent with taking three of the strategies 

inactive. With the coordinate basis order { }1 2u r s s t , we have for player 1 the initial payoff 

matrix: 

 ( )

94 1
5 10 10

4
5

1 9 1
10 10

9
10

0 2 2 0

0 0 0 0

2 0 0 0 0

2 0 0 0 0

0 0 0 0 0

ab abF c

 − −
 
 
 − − = − 
 
  
 

 (5.18) 

The transformed payoff field for player 2 has a similar structure: 

 ( )

94 1
5 10 10

4
5

2 9 9
10 10

1
10

0 2 2 0

0 0 0 0

2 0 0 0 0

2 0 0 0 0

0 0 0 0 0

ab abF c

 −
 

− 
 − = − 
 
  
 

 (5.19) 

To recover the original form of the payoffs for the prisoner’s dilemma we also need to transform the 

constant value matrix Eq. (5.10): 

 ( )

0

0

2

2

0 2 0 0

2 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

v

v

v

v

c v

ζ

ζ

− 
 
 
 =
 
 
 − 

 (5.20) 

Furthermore, the transformation is not specific to the exact form we chose for the prisoner’s dilemma. We 

pick the following payoff based on arbitrary values { }x y z w : 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0

0

0 0 0 0

1 1
2 2

1 1
2 2

1 1
2 2

1 1
2 2

0

0

0

0

0

w

w

w

w

w w w w

z w x y z w x y z

z w x y z w x y z

w x y z w x y z y

w x y z w x y z y

ζ

ζ

ζ

ζ

ζ ζ ζ ζ

 − − − + − − + + 
 

− − − − − − − + − 
 

+ − + + − − − 
 + + + + + − − −
 
 − − 

(5.21) 

The transformed payoff is the most general form in which the three strategies { }1 2r s s  can be 

inactive: 

 

0

0

2

2

0 2 2 2

2 0 0 0 0

2 0 0 0 0

2 0 0 0 0

0 0 0 0

w

w

w x y z

w x

y

z

ζ

ζ

 − − −
 

+ 
 

− 
 
 
 − 

 (5.22) 
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We see that the Nash equilibrium is satisfied with { }01 1
2 2

0 1
Nash

ζ ζ= − −  in all cases but Eq. 

(5.22).  We see that only the first row and first column are non-zero, indicating that we could take some 

or all of the strategies { }1 2r s s  to be inactive. For Eq. (5.22), we obtain the same Nash equilibrium 

whenever both { }y z  are positive and z x y= + . We see the possibility that an equilibrium value at a 

point does not imply an equilibrium value at all points. 

To understand inactive strategies better, we elaborate on the meaning of the payoffs that we have 

found above. The solutions we consider for the prisoner’s dilemma reflect a symmetric decision process 

and could be a just decision process in which the relative player effort u  of the prisoners generates a 

payoff whatever the other strategy is from Eq. (5.21). There are no payoffs that depend purely on the 

player relative preferences { }1 2s s  or total player effort r . The game theory model assumes that this is 

true for all time and for all strategic positions. Thus it is as if these strategies play no role. Even if we 

adopt this stance, we assume only that they are inactive: they still may influence the outcome of the 

decision indirectly. In this sense we look at the symmetric prisoner’s dilemma as being equivalent to a 

decision process in which there are three additional players controlling the influence of the inactive 

strategies { }1 2r s s . We note that the general case would diverge from the usual prisoner’s dilemma in 

that it would assume the zero payoffs found above hold only at a single point of space and time. 

Our symmetric prisoner’s dilemma still may represent a utilitarian solution or a just solution 

depending on the initial flows along the player preferences { }1 2s s . In either case we achieve the effect 

using a code of conduct. A code of conduct can just as easily deny rights based on self-interest as proffer 

rights that uphold the public-interest. We could also frame a model whose only solutions would be just 

(exercise 4). Our choice here was based on wanting a model where we could move between these 

opposite choices as part of our sensitivity analysis of the numerical solutions. Based on these analyses we 

are able to identify the mechanisms that are needed to support the just solutions (Cf. section 5.6). 

With these caveats, we develop the consequences of the prisoner’s dilemma considered as a player 

fixed frame model in which there is a single active strategy ( )1
2 12

u r r= −  measuring the relative player 

effort of the two prisoners. The stationary single strategy solutions we obtain are consistent with (Thomas 

G. H., 2006), though we extend these solutions to dynamic steady-state solutions. Moreover, the choice of 

the three inactive strategies is equivalent to a code of conduct (section 7.2) in which each player will fix 

the rate at which they will confess. The code of conduct is that each prisoner agrees to treat his strategy 

difference 
ks  as inactive. Although each prisoner controls his own difference, we assume that there are 

various levels of enforcement that hold these strategies inactive. Furthermore, we identify an additional 

code of conduct by taking the overall player scale, which is the sum of the two active summed strategies 

1 2r r+ , to be inactive. This strategy is controlled jointly by the two prisoners. Depending on the specifics, 

we may also envision all three inactive strategies as being controlled jointly. The sole active strategy u  

that remains reflects the relative player effort of the two prisoners. This introduces an effective agent 

reflecting joint control, which is accountable for the relative player effort choice. We suggest the 

terminology that when this variable is positive, player 2 is the aggressor and when negative player 1 is 

the aggressor.  

In the next section, we start with the initial conditions based on the initial payoff and strategy flows. 

We demonstrate that we need not choose the initial strategy to be the Nash equilibrium in order to obtain 

stable solutions to the field equations. 

5.5 Known behaviors 

A consequence of the expanded scope of our decision process theory is that we need to specify more 

behaviors than just payoffs and active strategies. We have introduced inactive player strategies as the 

mechanism that underlies the notion of a player and payoffs. In addition there are orientation potentials 
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whose existence and behaviors follow from our decision process theory. We set these initial behaviors of 

the prisoner’s dilemma for the player fixed frame model with a single active strategy. 

We keep in mind the following as we proceed. First, we are looking for solutions to the prisoner’s 

dilemma that have three additional isometries. We are thus justified in calling such solutions symmetric. 

These isometries are associated with a code of conduct the players agree to adhere to. We are also 

justified in thinking of such solutions as just. General solutions to the prisoner’s dilemma have much in 

common with the utilitarianism school in ethics (Tavani, 2011), whereas symmetric solutions have more 

in common with just utilitarianism. 

Second, we must be mindful of what we mean by initial conditions. Solutions to partial differential 

equations have unique solutions when the form of the solution is specified on some initial boundary or 

bounding surface. It may be at an initial point in time or space. If our intent was to predict the future 

based on a known state of the prisoner’s knowledge about each other and the situation, then the initial 

conditions would be based on time. Our goal here is a little different in that we want to provide an 

illustrative set of numerical examples. For this reason we consider specifying the system in a state with 

certain simple properties. For example we “start” the system at a point with zero acceleration, which 

facilitates our study of whether it stays at that point or not. We shall refer to the behaviors at our 

“starting” point as the known behaviors. 

The third point to keep in mind as we proceed is that the general description of the decision process 

Eq. (3.5) depends on the strategies we identify as active and inactive in the normal-form coordinate basis: 

 ( )( )2 j j a k k b a b

jk a b abd d A dx d A dx g dx dxτ γ ξ ξ= + + +  (5.23) 

The invariant distance τ  we term the proper time. We formulate each decision process at the outset 

assuming that the only inactive strategies are set by player inactive strategies. However we also note that 

we put all strategies on an equal footing when we use the holonomic basis for the strategies: 

 2 ˆd dx dx
µ ν

µντ γ=  (5.24) 

We can transform from one basis to another, Eq. (1.69) by comparing terms. We now have a third basis 

that proves insight, which is the symmetric normal-form coordinate basis whose form is identical to Eq. 

(5.23) but the inactive strategies now include all the isometries, with a corresponding reduction in the 

active strategies. We will use the holonomic form Eq. (5.24) as the common ground to relate values from 

one basis to another. 

In this section, we need to specify the known flows, set the values for the orientation potentials for the 

symmetric prisoner’s dilemma, transform these values from the symmetric normal-form coordinate basis 

to the symmetric co-moving orthonormal coordinate basis and deal with the specification of inertial 

effects that have no analogy in game theory. We deal with each of these topics in the following sub-

sections. 

5.5.1 Known strategic flows  

In the symmetric normal-form coordinate basis, the initial flow V
µ  is specified by the active 

components a
V  determined by the strategies chosen and the inactive components jV  that specify the 

coupling of the payoffs fields to the flow. Along a streamline, these flow components are the rates of 

change: 

 
dx

V
d

µ
µ

τ
=  (5.25) 

We have normalized the flow to unit length, Eq. (5.8) and Eq. (5.24): 

 ˆ 1
dx dx

d d

µ ν

µνγ
τ τ

=  (5.26) 

Based on an initial flow direction, there is a natural set of orthonormal vectors that can be constructed. 

The set aligns proper time along the flow direction and constructs vectors transverse to the flow using the 

Gramm-Schmidt orthogonalization process, starting with the initial strategy directions. 
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We sketch this process. The first step is to take 
a a

E Vο =  and j jE Vο = . We then choose the 

remaining vectors in some order, which we take to be along 
1 2 1 2s s r uξ ξ . These are 

independent of the flow, though not in general transverse to the flow. We take a unit direction along the 

first strategy 
1ξ , which defines the direction 

1U . We construct a new orthonormal vector that is both 

orthogonal to the flow and of unit length: 

 
( )( )

1 1
1

1 1 1 1
ˆ

U U E E
E

U U E E U U E E

µ ν µ
µ νο ο

µ ν µ λ ν λ
µλ νο ο νο ογ

−
= −

− −
 (5.27) 

We go through each vector and use the same algorithm. Each new vector must be orthogonal to all 

previous vectors and have unit length. This process can be done in any frame of reference.  

The last strategy will be the active relative player effort strategy, u . In the symmetric normal-form 

coordinate frame, this strategy is orthogonal to each inactive strategy. In picking the corresponding 

orthonormal direction υ  associated with the relative player effort, we therefore can set 0jE υ =  for each 

inactive strategy j . 

Since the initial active strategy flows are known, to complete the specification of the flow vector, we 

need only the magnitude of the time component of the flow m  and the player inactive strategy flows. We 

start the inactive flows at zero. The players are uncoupled from the decision process. This is not 

unreasonable if we assume that we start at an equilibrium position 0qυ = . The inactive flows are 

determined from Eq. (3.64): 

 2j j jE q E E
α

υ ο υ ο υ αω∂ = − −  (5.28) 

If there is a non-zero charge gradient υαω , the player will develop a non-zero coupling away from 

equilibrium. We think this provides support for the streamline solution choice that the electric field is 

zero, Eq. (4.76).  

Given the initial flow directions and from this the values of the complete symmetric co-moving 

orthonormal set at some initial position, we use Eq. (4.107) to determine the symmetric co-moving 

orthonormal frame at all other positions. These equations provide coupled differential equations in the 

proper relative player effort υ  and can be uniquely solved once the coefficients in the equations are 

determined. The coefficients are the orientation potentials, which we deal with next. 

5.5.2 Known payoff fields and associated orientation potentials 

Given the initial conditions for the symmetric co-moving orthonormal vectors, we have the 

differential equation Eq. (4.107) that determines the inactive components at all other points of space 

assuming we know the scalar functions for the acceleration qυ , charge gradients υαω , tidal bond 

components υαβω  and charges eα . The latter however is not independent based on Eq. (3.69). We solve 

for the unknown scalars using the field equations Eq. (4.108), (4.109), (4.110), (4.111), (3.69) and (4.78): 

 
1 1

2 2

2

2
1

2
1

2

0

q

p
q p ph h

n

p q

p
q q q q p

n

e q e e

p

υ υ υ β υβ
υ α υα αβ υ β υα

υ υ γ υ υ
υ αβ αβ υ υγ αβ υα β αβ αβ αβ

υ υβ υα υα β α υβ
υ β υ υα β υα υα β

υ υ υβ υα
υ υ β υ υα

β
υ α υ α υα υαβ

αυ

ω ω ω ω ω ω

µ
ω ω ω ω ω ω κ

κ ω ω ω ω ω ω ω

µ
ω ω ω κ µ

ω ω

∂ = − +

− 
∂ = + + − − + 

− 

= − + + −

− 
∂ = + − + + − 

− 

∂ = − + +

=

 (5.29) 
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We make model assumptions about the inertial components pαβ  and the relationship between energy 

density µ  and pressure p  (sub-section 5.5.4). To complete our specification of the numerical problem 

for the field equations, we have to determine the initial values of the charge gradient and tidal bond 

components. These we show are related to the payoff fields. 

To relate the initial values of these orientation potentials to payoffs, we start with the normalized flow 

Eq. (5.26). We note that this holds in any frame of reference and provides the basis for discussing the 

prisoner’s dilemma in the normal-form coordinate basis, the symmetric normal-form coordinate basis, 

the holonomic basis or the symmetric co-moving orthonormal coordinate basis: 

 

ˆ

ˆ

ˆ

jk jk

k

ja jk a

j k

ab ab jk a b

A

g A A

γ γ

γ γ

γ γ

=

=

= +

 (5.30) 

The metric potentials ˆ
µνγ  in the holonomic basis tie these different descriptions together. So for example, 

we have on the left the metric potentials in the holonomic basis, whereas on the right we have the 

potentials that describe behaviors in the normal-norm coordinate basis. 

In addition to the strategic flows 
a

V , we know the initial behaviors of the payoffs, which are related 

to the holonomic metric potentials. Assuming the transformed basis from section 5.4 and further 

assuming that the metric potentials are independent of all coordinates except ( )u t , we relate the metric 

potentials to the normal-form coordinate basis potentials: 

 

1 2

1 2

, ,

, ,

, ,

ˆ

ˆ ˆ

k k k k

a jm a jk m jk a m a jk m jk am

k k k

a jb b ja a jk b b jk a jk ab

j k

m r s s

a b u t

A A A F

A A F

ξ ξ

γ γ γ γ γ

γ γ γ γ γ

=

=

=

∂ = ∂ + ∂ = ∂ +

∂ − ∂ = ∂ − ∂ +

 (5.31) 

No result of the theory depends on the initial value of the vector potentials 0j j

a m
A A= = , so there is no 

loss in generality setting them to zero; this is a consequence of gauge invariance. Similarly there is no loss 

in generality in taking the initial metric potentials equal to the Minkowski metric mµν .  

We look only for the streamline solutions of section 4.5, which have an initial time derivative of zero. 

We thus obtain the following: 

 

ˆ

ˆ 0

ˆ 0

ˆ

k

u jm jk um

k

t jm jk tm

t ju

k

u jt jk ut

m F

m F

m F

γ

γ

γ

γ

∂ =

∂ = =

∂ =

∂ =

 (5.32) 

Implicit in this description is that the normal-form coordinate basis and co-moving basis be aligned using 

the Gramm-Schmidt process described above, Eq. (5.27). The symmetrized normal-form basis and the 

normal-form basis are aligned, which proves the result. So, in this case initially t ο τ= = , time is along 

the flow (proper time) direction and u υ= , the relative player effort is along the proper active relative 

player effort strategy direction. There will be small changes however since the initial flow is not 

identically along the time direction. For orientation we ignore these small effects but take them into 

account in our numerical calculations. What is striking is that there are many gradients that are not 

specified at all, such as ˆ
u jk
γ∂ .  They represent influences that impact the dynamic behaviors but are 

absent from game theory models. We must get better insight into such behaviors. 



 © 2012-2015 Gerald H Thomas  

136 

 

For the symmetric normal-form coordinate basis, we have the same holonomic metric potentials ˆ
µνγ , 

which are expressed in a form similar to Eq. (5.30), with the noted differences in what is active and what 

is inactive: 

 

1 2 1 2

, ,

, , , , ,

ˆ

ˆ

ˆ

jk jk

k

ja jk a

j k

ab ab jk a b

a b u t

j k s s r

A

g A A

ξ ξ

γ γ

γ γ

γ γ

=

=

=

=

= +

 (5.33) 

Of specific interest will be the gradients whose payoff values we know from Eq. (5.32): 

 

1 2

1 2

, ,

, ,

0

ˆ 0

ˆ

k

u jm jk um

k

t jm jk tm

k

t ju jk t u

k m k k k

u jt jk ut jm ut jk ut ut ut

j k

m r s s

m F

m F

A

F F m F F F

ξ ξ

γ

γ

γ γ

γ γ γ

=

=

∂ =

∂ = =

∂ = ∂ =

∂ = + = ⇒ =

 (5.34) 

We know the initial behaviors of the gradients u jm
γ∂  for the indicated restricted set of indices and we 

know the initial behaviors of 
k

ut
F  for each prisoner. We don’t know the corresponding electric field for 

the symmetric inactive directions 
1 2, ,s s r . 

5.5.3 Symmetric co-moving frame values 

We take the initial behaviors that we have determined and compute the implications in the symmetric 

co-moving orthonormal coordinate basis. We start with the electric field 
j

f ου  components from Eq. 

(4.107), which are determined by the game values: 

 ( ) ( )( )( )2 1j t u u t j j j j j k

tu kf E E E E F q E E e E e E E E
ο α α ο α β ο

ου ο υ ο υ υ υα υαβ οω ω= − = + + + − (5.35) 

To this we add the behavior for jmυγ∂  that can be derived from Table 4-1 (Cf. exercise 24 from section 

3.11, Eq. (3.85), specialized to the streamline solution), which are set by the initial payoffs for the 

prisoner’s dilemma: 

 ( )2 2 2u k

jm jk um j m j m j m j mm E F q E E E E E E E E
α α α β

υ υ υ ο ο υα ο ο υαβγ ω ω∂ = = − − + −  (5.36) 

These two behaviors depend on the acceleration qυ  along the relative player effort direction. To focus on 

the possibility of other equilibrium behaviors, we assume that the initial acceleration is zero. To get a 

rough idea of what is determined, we recall that we align the co-moving frame so that prisoner j  is along 

co-moving direction j
α and assume the initial prisoner flows are zero 0

j
E ο = . The latter determine the 

initial charges, which we are taking as neutral or zero.  

With these approximations, we see more clearly what is determined. From the game value of the 

prisoner’s dilemma, Eq. (5.35) we determine the charge gradient: 

 
1 2

1
2

,

j j

tu

j

F
α

υ

ξ ξ

ω

=

≅
 (5.37) 

We determine the charge gradient because we have assumed the electric field components 0υαθ =  are 

zero in order to meet the conditions for the streamline solutions. Given the charge gradient, from the 
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payoffs of the prisoner’s dilemma, Eq. (5.36) we determine the tidal bond components that lie along the 

mixed axes of the inactive player directions and the equivalent player directions: 

 

1 2

1 2

1 1
2 2

, ,

, ,

u j m

j k

tu m jk um

j k

m r s s

F E m Fυ α β ο

ξ ξ

ω

=

=

≅ −

 (5.38) 

In performing the numerical analysis, we use the initial transformation matrix values and Eq. (5.35) and 

(5.36). There are additional components that we have not determined. 

Among the many components not determined are the player components of the tidal bond matrix: 

 
1 2, ,

2
u j ku jk

j k

υ α β

ξ ξ

γ ω

=

∂ ≅ −
 (5.39) 

The mixed term is an example of influence of one prisoner on the other that is not part of any payoff 

matrix. Our strategy in general is to set these new terms to zero unless there are clear reasons for not 

doing so. At a later time the strategy is to do a sensitivity analysis on these assumptions.  

For these mixed terms, there may in fact be reasons not to set them all to zero. One such reason that 

comes into play is the requirement that the pressure, Eq. (4.110), be positive: 

 1 1
2 2p q

υ υβ υα υα β α υβ
υ β υ υα β υα υα βκ ω ω ω ω ω ω ω= − + + −  (5.40) 

We take the initial acceleration to be zero. We must impose constraints on the unknown compression and 

charge gradient components in order to insure that this pressure component be positive. Our initial 

approach will be to use the diagonal components of Eq. (5.39) to accomplish this. We intend to 

investigate similarly the effects of all undetermined components on the dynamic behavior as they provide 

valuable insight into the dynamic mechanisms.  

5.5.4 Numerical values and inertial effects 

The numerical results in this chapter will be based on the following choice for the unit flow with  

components { t , 
1ξ , 

2ξ , 
2N , 

2C , 
1N , 

1C }: 

 { }1.061 0. 0. 0.2500 0. 0.2500 0.V µ =  (5.41) 

In the symmetric normal-form transformed frame { t , 
1ξ , 

2ξ , 
1s , 

2s , r , u }: 

 { }1.061 0. 0. 0.1768 0.1768 0.2500 0.V µ =  (5.42) 

With these values, for the inactive space { }1 2 1 2s s rξ ξ  the charge gradient and tidal bond 

components are chosen to agree with the game value Eq. (5.35) and player payoffs Eq. (5.36) using a 

1
3β = , which leads to a decision mass of 4m =  and hence 

0 4.243ζ = …: 

 

{ }

1

2

3

3

3

0.1871 0.1871 0. 0. 0.

0. 0.03706 0.6607 0.4660

0. 0.6593 0.05706 0.4660

0.03706 0.6593 0. 0.

0.6607 0.05706 0. 0.

0.4660 0.4660 0. 0.

x

x

x

x

x

υα

υαβ

ω

ω

= −

− 
 

− − 
 =
 

− − 
 − 

 (5.43) 

We arbitrarily set all the remaining charge gradient and tidal bond components to zero with the exception 

of the diagonal components labeled { }1 2 3x x x . We distinguish between prisoner 1, prisoner 2 and the 

remaining inactive dimension. The pressure component Eq. (5.40), with units 1κ = , is a function of three 

unknowns (Figure 5-1): 

 
2

1 2 1 3 2 3 31.2400 3 3 3p x x x x x x x
υ

υ = − + + + +  (5.44) 
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It is clear that we must choose values of these unknowns that are large enough or the pressure will be 

negative.  

 

Figure 5-1: Surfaces of constant 

1.0p
υ

υ =  in the parameter space 

 

Figure 5-2: Pressure p
υ

υ   

There are two disconnected surfaces, which 

are illustrated when all three parameters are 

equal,  
1 2 3x x x= =  (Figure 5-2). For our 

numerical work, we pick a pressure component 

1p
υ

υ = , which occurs when all three parameters 

are equal to 
1 1.497x = . 

We can pick a value in which the pressure is uniformly zero. However the gradient of the acceleration 

q
υ

υ∂  does not vanish since it is equal to the vorticity squared, Eq. (5.29). A non-zero inertial acceleration 

implies the existence of an inertial stress or pressure. The pressure changes value at other strategic points. 

There are important implications to our need for a non-zero pressure. For a Nash equilibrium, this 

would not be necessary. Our choice of a non-Nash equilibrium solution requires the existence of inertial 

pressure to support the stability of the solution with a non-trivial code of conduct. Thus we obtain new 

types of stabilities at the cost of requiring sufficient forces to support them. The code of conduct requires 

additional support in the form of inertial contributions. We shall see that some of these inertial 

contributions appear as gravitational effects pulling behaviors towards areas where there is already a 

concentration of inertia. 

There are a number of parameters associated with the pressure pαβ , pυα  and energy density µ  that 

we have not yet specified. These represent significant effects that are not addressed by the concepts of 

payoffs and strategies. We make the following provisional choice that the pressure and energy density are 

analogous to a perfect homogeneous fluid: 

 

0

p ph

p ph

p ph

αβ αβ

υυ υυ

υα υα

=

=

= =

 (5.45) 

The homogeneity of the fluid is expressed as: 

 pµ α=  (5.46) 

The resiliency α  is a measure of internal energy, which in general should be larger than unity. For our 

model calculations we take 5α = . 

We have specified a complete set of initial behaviors from which a unique solution to the scalar field 

equations Table 4-4, Table 4-5 and Table 4-6 can be obtained. Given the scalar fields, we can then obtain 

the inactive and active transformations Table 4-1. In practice we carry out the solution for these quantities 

simultaneously as coupled differential equations. We present the stresses, strains and vorticity turns that 

result from our decision process theory in the next sections using the software Mathematica (Wolfram, 

1992). Dynamic behaviors will be introduced in section 5.9 and subsequent sections. They rely on the 

same scalar solutions, extended to include non-stationary active strategies, Eq. (4.112). 
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5.6 Inertial stress behaviors 

In this section we show that inertial effects represented by the stress tensor are needed to support 

solutions to the prisoner’s dilemma in which the prisoner’s cooperate for their common good, their 

public-interest. Such effects are shown not to be needed to support solutions in which players operate 

only on their self-interest. These results provide important insight into the decision making process. The 

inertial effects are needed to resolve the paradox of the prisoner’s dilemma. More generally they lend 

support to the importance of contracts (section 7.2) as the necessary ingredient for the invisible hand 

(Smith, 1776) that is implicit in game theory arguments. 

In decision process theory, we identify both the forces that pull the system together as well as the 

forces that push the system apart. In this section we demonstrate that inertia generates an attractive force 

that brings things together. It also generates an opposite force, which is a consequence of energy being 

concentrated generating stress (pressure). We demonstrate that we can engineer structurally stable 

behaviors by insuring that there is sufficient inertia to generate attractive forces to pull the system 

together and overcome any destabilizing forces. What is the source of this inertia? We suggest it is the 

rules of the game, the agreement to adhere to certain standards, to a code of conduct.  

We turn now to the numerical results based on the known conditions, section 5.5. We view the 

prisoner’s dilemma decision process as one that repeats. It is a set of plays in which each prisoner can 

wager but only the difference in wagers u  is an active strategy. Each prisoner learns from the previous 

plays and so each prisoner comes to a conclusion about what to do next. The decisions are more complex 

than simply having a payoff matrix, though that is part of their considerations. In addition there is the 

inertial acceleration q
υ

 that is determined by the energy density and stress tensor, the strains and their 

gradient variation as a function of the active strategy. Finally there is the vorticity: the turns, twists, 

rotations that are possible without generating strains. We think of fixed point behavior as associated with 

a point at which there is zero acceleration. The question of structural stability is then whether the system 

as a whole would move towards, away or around this point if the restrictions based on the quasi-

stationary hypothesis were removed.  

5.6.1 Model results 

The general decision process theory Table 4-6 identifies in Eq. (2.42), the change in inertial 

acceleration q
υ

, which is also the acceleration determined by the source energy momentum tensor. We 

made the assumption that the pressure was initially non-zero. Based on the known behaviors (section 5.5), 

the field equations lead to a pressure that is peaked at the origin, 0υ = , Figure 5-3. We emphasize that 

this result is a consequence of the field equations and the known conditions. 

 

Figure 5-3: Pressure p  versus υ  

 

Figure 5-4: The inertial acceleration 

q
υ  versus υ  

Our stationary solution for pressure demonstrates its tendency to bunch around the origin. We note 

that the pressure is not symmetric, but drops off more dramatically on the left (prisoner 1 is more 

engaged) than on the right (prisoner 2 is more engaged). The origin of the asymmetry is that there are two 

possible solutions of pressure in Figure 5-2 for any given positive pressure. Our treatment is symmetric in 
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the sense that there is another solution 
1 1.497x = −  that is the mirror of Figure 5-3. Nevertheless each 

solution demonstrates an asymmetry. 

We are not surprised that the pressure has a maximum at the origin. The assumption that the origin 

was a point of zero acceleration defines the position of the peak for pressure. Moreover, since the energy 

density is proportional to the pressure, it too peaks at the origin and has the same shape. The consequence 

of the strong pressure peak at the origin is that the acceleration Figure 5-4, which is roughly proportional 

to minus the gradient of the pressure (Eq. (4.53)) will be positive when prisoner 2 is more engaged (on the 

right) and negative when prisoner 1 is more engaged (on the left). 

If we think of the inertial acceleration as being balanced by the gradient of an inertial potential q−  

that represents the attraction that decisions tend to follow previous decisions, then the potential should 

represent an attractive well, Figure 5-5: 

 q qυ υ= ∂  (5.47) 

Inertia produces many effects, one of which is this one describing acceleration. It is analogous to the 

physics potential in that the negative gradient of the potential is the force, which is proportional to the 

acceleration. In the next section (section 5.7.1) we shall see that inertia determines the volume effects. 

When we compute the time component of the metric potential 
ttg  (section 5.9), we shall see that the 

charge density determines the initial shape. The charge density is indirectly determined by the inertial 

effects. There are many types of effects, clearly indicating that the inertial effects are not scalar but tensor 

forces.  

At this point we observe that in the co-moving frame, the spatial components of the flow are zero, 

which leads us to Eq. (5.47). This equation and the shape of the potential well Figure 5-5, support our 

argument that inertial effects induce stability. We believe this is a crucial aspect of decision making when 

there is a non-trivial code of conduct. Decisions will collect together; where they collect creates an 

equilibrium point. Because they collect they attract subsequent decisions towards the same point in a way 

analogous to gravitational attraction. This equilibrium point is determined by the code of conduct, not by 

considerations of utility, self-interest, or even public-interest. 

 

 

Figure 5-5: Inertial potential q−  

In decision process theory, the attribute that 

the pressure bunches around the origin does not 

hold in general. For these symmetric solutions of 

the prisoner’s dilemma, it holds for initial 

pressures down to a critical pressure 

0.02693cp = …  defined as the point at which 

the acceleration gradient vanishes, which is 

proportional to the scalar formed from the 

charge gradients, 
υα

υαω ω .  

Below this pressure the equilibrium point moves away from the symmetric center. The cause is traced 

to the presence of the centrifugal effect of υαω . We investigate this in more detail, since this provides an 

understanding of the source of stable behaviors. 

5.6.2 Sensitivity Analysis 

We do a sensitivity analysis by considering several cases each with an initial pressure of 0.01 that is 

below the critical pressure. We vary the input flow keeping the inertia fixed at the model value of 4. We 

call the flow in which both prisoners choose not to confess the common good solution. The Nash 

equilibrium flow where both prisoners confess we call the Nash solution. We consider these two 

solutions, with and without a non-zero game value.  
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Figure 5-6: Pressure for Nash solution 

with no game value 

 

 

Figure 5-7: Pressure for common good 

solution with no game value 

For the Nash solution, the shape of the pressure for zero game value, Figure 5-6, has a peak at the 

origin. This demonstrates that nothing prevents the bunching of the energy density and pressure around 

zero, because the Nash solution has charge gradients υαω  that are almost identically zero when there is no 

game value. We find that the Nash solution is structurally stable for zero game value in the simple sense 

of attraction. 

In contrast, the pressure for the common good solution, Eq. (5.41), has a minimum at the origin, 

Figure 5-7. It demonstrates that with the same assumptions and no game value, the charge gradients lead 

to a stable solution based on the pressure gradient. Again, extra energy is expended to insure the 

stationary behavior. The corresponding potential well Figure 5-5 turns into a potential mountain. We 

conclude that there is not enough inertial mass to balance out the centrifugal effect ascribed to the game, 

Figure 5-8, though there is sufficient pressure gradient. We thus find evidence that this solution is not 

structurally stable.  

 

 

Figure 5-8: Vorticity ( )υαω υ  for player 1 

for common good solution with no game value 

 

Figure 5-9: Vorticity ( )υαω υ  for player 1 

for Nash solution with game value 

We thus agree with the assessment that the common good solution is possibly less structurally stable 

in the absence of inertial effects. However we showed that with sufficient initial energy density, the 

instability can be overcome, Figure 5-3. The source of the sign change is clearly seen in Eq. (5.6). 

Whenever there is a charge gradient, the initial pressure has to be large enough to overcome the effects or 

the origin will be unstable. 

There are other sources to a non-zero charge gradient, one of which is the existence of a non-zero 

game value. For the Nash solution, the charge gradient Figure 5-9, is about an order of magnitude smaller 

than the effect due to the common good solution. Nevertheless it is there and the pressure has to be large 

enough to overcome this. The critical pressure here is much smaller. Although for an initial pressure of 

0.01, the pressure has a maximum at the origin, for a pressure sufficiently small, the maximum turns into 

a minimum.  



 © 2012-2015 Gerald H Thomas  

142 

 

As the pressure increases, the shape of the potential well , Eq. (5.47), narrows. In other words, we 

increase the stability. As the pressure decreases towards the critical pressure, we decrease the stability. 

There are other inertial parameters, the inactive component stresses  and  and the energy density 

, which further refine the shape of the potential well. The critical pressure depends not only on the 

initial (average) pressure  but on the resilience . For now we don’t have sufficient information to 

further refine our understanding of these effects and so leave them to a future study.  

In this model case, we see the consequences of . With this assumption, we see that a non-zero 

game value induces instability because it leads to a non-zero value of the charge gradient. If we have a 

decision process with a very high game value, this process will be intrinsically more unstable than a 

process with a smaller value. We associate a very high game value with high stakes and high risk. This is 

less stable than a small game value. 

This completes our sensitivity analysis and we return to the features of the model defined by the 

parameters of section 5.5. Our conclusion from this section is that when we are sufficiently above the 

critical pressure, the inertial energy density provides structural stability that counters two potential 

destabilizing effects: a non-zero value for the game and any flow that is not a Nash equilibrium solution. 

We investigate metrical behaviors of the solution in the next section. 

5.7 Strain behaviors 

It is not universally accepted that human behavior is subject to the same quantitative discipline that 

has been applied to the physical sciences. However, the game theory of (Von Neumann & Morgenstern, 

1944) is built on this premise. These authors argued that utilities determine the payoffs and are not only 

ordinal (preferences can be ordered) but cardinal (numerical values can be assigned in a meaningful way). 

We also believe that numerical measures must be part of decision process theory. We believe that utilities 

can be meaningfully defined that are more than a mere ordering of preferences but a way to distinguish 

what strategies are near or far from each other. We go beyond game theory by requiring that utilities are 

convertible (section 7.7), which leads us to concepts of space and time that are non-Newtonian.  

We make the distinction, as does Einstein in his theory of relativity, between the position of points in 

space and their distance. The positions of points represent the location of strategic choices in space and 

time. In a mathematical sense these points have a fixed place in the topology of space and time. A 

topology provides the concept of what it means to be neighbors but is not sufficient to determine the 

concept of distance. The existence of a measure for distance requires a physical field that provides the 

connection between points in space. This connection provides additional structure to the topology. It 

carries energy and momentum; it is affected by other physical fields and may change in time and vary in 

space. The connection is part of the physical world distinct from the topological backdrop. The 

connection is part of the overall schema that allows utilities to be convertible.  

In the physical world, the connection between points is carried out with yardsticks and clocks. In 

decision processes metrical measures survive that derive from these basic yardsticks and clocks that allow 

us to quantify choices. We demonstrate this in our theory with the prisoner’s dilemma as the teaching 

example. In the last section we focused on the inertial stresses that arise in the theory. We showed that 

inertia provides a fundamental mechanism for endowing the system with energy density and pressure, 

which is the average of the diagonal components of stress. 

We use the word stress in a way analogous to physical theories to represent the forces present. An 

independent concept is the idea of strain, which highlights the effect on the geometric configurations that 

measures displacements of the system in space and time. A bridge undergoes stress when a heavy object 

goes across it. The stress generates strain as evidenced by parts of the bridge that move as a consequence. 

The strains are in response to the stresses. The notion of strain makes sense for decision processes 

because changes in the strategy configuration of the system are observable, distinguishable and 

measurable. In this section and the next we demonstrate that the Electromagnetic field behaviors Table 

4-4 and tidal behaviors Table 4-5 define not only the strains such as  associated with movement 

Φ

pαβ pυα

pµ α=

p α

0υαθ =
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along the active direction , but through the coordinate transformations they define the metric. The 

inactive metric components  will make precise the notion of cardinality. In this section, we explore the 

properties of the strains in the inactive space. 

Our numerical work is presented based on expanding the tidal bond component  into a bond 

compression coefficient  and bond shear components : 

  (5.48) 

This decomposition is not only a standard way of analyzing the properties of a symmetric matrix, but has 

been used to understand the complex field equations of Einstein (Hawking & Ellis, 1973). Any such 

matrix can be thought of as an operator that transforms the shape of a small cube; since the matrix 

changes as a function of the active strategy, the shape of the small cube will also change as a function of 

position. The two of changes correspond to these distinctions.  

We can use these ideas to characterize the volume of the cube. The bond compression coefficient 

leads to a change in the volume : 

  (5.49) 

The bond shear components leave the volume unchanged but distort the shape of the cube by sliding a 

face of the cube parallel to one of the other faces in such a way that the volume does not change. It may 

help to think of a cube of Jell-O as something with a fixed volume and consider different distortions to 

this. These ideas give a physical picture of the strategic strains on a small cube that is moved along an 

active strategy direction in the co-moving frame. 

5.7.1 Compression results 

For our streamline solutions of the prisoner’s dilemma, we obtain the following equation (Cf. exercise 

7) demonstrating the close relationship between the stress (pressure) and the strain (compression): 

  (5.50) 

In the absence of charge gradients, such as we saw above for the Nash solution with no game value, the 

bond compression depends only on the energy density, acceleration and stress. For our numerical solution 

of the prisoner’s dilemma with the initial conditions, Eq. (5.35) and (5.36), which gives , 

this shape of the bond compression (Figure 5-10) is modified only slightly by the charge gradients. 

The bond compression gives direct evidence of changes in the configuration as a consequence of the 

energy density and active stress component. If we move a unit cube in the five inactive dimensions along 

the active strategy, we find that the volume changes as it moves left or right (Figure 5-11). In particular 

we see that the size of the box goes to zero as we go further left in the direction in which prisoner 1 is 

more engaged. As we go to the right, the size of the box becomes constant. The asymmetry of the volume 

corresponds to the asymmetry noted earlier about the shape of the pressure (sub-section 5.6.1). For our 

numerical example, we have chosen to focus on solutions in which prisoner 2 is typically more engaged. 

The idea that the unit of measure changes depending on where we are, illustrates that in decision 

process theory, the concept of space and its ordinal properties are distinct from the concept of distance 

and its cardinal properties. 
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Figure 5-10: The bond compression 

coefficient   

 

Figure 5-11: Bond compression 

volume as a function of strategy  

5.7.2 Shear results 

The initial sources of strain are the initial payoffs, Eq. (5.38). In addition to the bond compression, 

these strains generate what we characterize as bond shear in which the shape changes without rotation but 

the volume remains the same. To simplify the interpretation of the numerical results, the equation for the 

shear can be written in a reduced form similar to exercise 10, which is simpler for the single strategy 

models with the streamline solution: 

  (5.51) 

The factor , (see Figure 5-12), depends only on the inertial terms. For the single strategy models, we 

make no assumption about the form of the stress such as Eq. (5.69). For the case of the numerical 

example with a perfect fluid, the reduced shear simplifies further: 

  (5.52) 

The reduced shear depends on the inertial factors only through the shape factor . In particular, when 

the charge gradients vanish, the reduced shear is constant. According to exercise 10, this also occurs if we 

make the special choice for the stress, Eq. (5.69). 

 

Figure 5-12: Shape factor  

normalized to unity at the origin 

For our choice of parameters of the 

prisoner’s dilemma, and with pressure 

components for an ideal fluid, the charge 

gradients are small and so the reduced shear is 

approximately constant (see for example Figure 

5-13). Note that the addition of non-ideal 

stresses  and , Eq. (5.51), can change 

this. 

The initial conditions set the initial value of the bond shear  and reduced shear at zero 

relative player effort, Eq. (5.48): 

( ) ( )υα
αυ ω υΘ = υ

( )

( )2 12
i in n

q

h p h p

υ υ
αβ αβ

υ υ
υ υ υ

υ υ υγ γ
υ αβ υα β αβ υγ αβ αβ γ

σ σ

σ ω ω ω ω κ

= Γ

∂ Γ = + Θ Γ

Γ ∂ = − − −

υΓ

2
2

1

h

n

υγ
αβ υγυ υ

υ αβ υα β

ω ω
σ ω ωΓ ∂ = −

−
υΓ

( )υ υΓ

pαβ pυυ

( )υαβσ υ



The Dynamics of Decision Processes 

 

145 

 

  (5.53) 

The off-diagonal elements can be expected to change slowly and represent the payoffs for the prisoner’s 

dilemma as viewed in the effective process in which there are five players and a single active strategy. 

The payoff values change due to the field equations, so for example at  we have: 

  (5.54) 

One measure of the shear effects is . It has a maximum at the origin and is roughly constant over 

the whole range. In addition, shear effects lead to changes in the payoff tensor. In other words, due to 

successive plays of the decision process, each prisoner adjusts his choice. For steady state behaviors, this 

will manifest itself as a spatial dependence. For the values chosen here for the prisoner’s dilemma, the 

changes are primarily those due to the change in shape, Figure 5-12, as opposed to changes in the value of 

the reduced shear, such as Figure 5-13. 

There are 14 independent bond shear components, of which six we have identified as being related to 

the payoffs of the prisoner’s dilemma. That means there are eight components that measure something 

new, something that directly relates to the strain configurations that result from the assumed stress. We 

pick as an interesting example, the mixed component  between the two prisoners, Figure 5-14. We 

think of the prisoners as interacting only by means of their respective payoffs. However, decision process 

theory provides influence through other means, such as through the bond shear components , Eq. 

(5.54). Though zero at zero relative player effort, it shows a small but non-zero effect at other values of 

relative player effort. 

 

 

Figure 5-13: Reduced bond shear  

 

Figure 5-14: Reduced bond shear  

5.7.3 Charge gradient results 

In addition to bond shear and compression, we have tidal charge gradients. The initial charge 

gradients for prisoner 1 and 2 are set by the game values, Eq. (5.37) and the remaining values are set to 

zero. These initial values in particular determine the tidal charge gradients , Figure 5-15. The color 
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code is that blue, red, green, yellow and purple represent  that are in the initial directions 

 in the sense of the orthogonalization process described in section 5.5. By 

assumption only the prisoner’s charge gradients along  are non-zero at zero relative player effort. 

We have noted that the non-zero charge gradients strongly influence the inertial properties of the 

acceleration , Eq. (5.6) as well as the bond shear Eq. (5.52). From Figure 5-15, we see the effects are 

particularly strong when prisoner 1 is more engaged, . 

We see from these examples that stationary behavior results from strains that, under special 

conditions, exactly cancel each other. Just as in mechanical engineering, we conclude that forces lead to 

dynamic behaviors. Stresses lead to strains and hence changes in configurations. Changes in configuration 

can be minor or catastrophic. We gain insight into those stresses from an analysis of the stationary 

behaviors. In section 5.6, we identified that the forces based on the payoff behavior exist side by side with 

inertial forces that are significant contributors to equilibrium behaviors. In this section we see that stresses 

induce strains in the configuration of the system. These strains determine the size of the yardstick by 

which one measures how near or how far apart two strategic choices are. In this way we capture the 

variable nature of utility and deal with how to convert the measure of utility from one point in space time 

to another. In the next section, we analyze the persistent behaviors that result from these stresses and 

strains and determine the symmetric normal-form coordinate basis metric potentials that result. 

 

 

Figure 5-15: Charge gradient field 

 in the co-moving frame 

 

Figure 5-16: Electric field  in 

the co-moving frame 

5.8 Persistent behaviors 

Persistent behaviors, Table 4-1, reflect the basic nature of a player or agent as defined in chapter 3. 

The notion of persistence comes from the metric and the concept of isometry. A metric is the measure of 

distance between neighboring points, Eq. (1.48). In the last section we highlighted aspects of our 

theoretical foundation that require the measure between points to change. In general, any transformation 

of coordinates will cause such a change. However there may be special transformations that leave the 

metric components unchanged: an isometry is a transformation of coordinates that leaves the metric 

components unchanged. 

Our notion of player (agent, prisoner, etc.) is based on the existence of an associated isometry. We 

recall that for each player or agent, the isometry is defined by the existence of a vector field  

satisfying the Killing relationship Eq. (3.22). Equivalently, there is an associated dimension  and a 

holonomic frame in which all metric components are independent of this dimension. We showed that the 

persistency components , Eq. (3.61), are in fact the components of such a Killing vector 

in the co-moving frame. The behaviors of these components in the co-moving frame completely 

characterize the persistency of that player including the inactive metric that is the measure of distance in 

the inactive space: 
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  (5.55) 

There are three categories to consider: the inactive behaviors , the active behaviors along the flow 

 and the active behaviors along the active strategy . In the player fixed frame model the latter 

components are zero, . In this section, we analyze the non-zero components for the prisoner’s 

dilemma. 

The initial behavior of the persistency components result from the initial flows and from the initial 

orthonormal set described by the Gramm-Schmidt process, section 5.5. We also compute the proper 

charges and electric field components from Table 4-1. These values also relate to persistency. The 

persistency equations are determined by the inertial and tidal behaviors, Table 4-1, which have been 

computed numerically in sections 5.6 and 5.7. We start by checking that our solution meets the known 

conditions, section 5.5.  

5.8.1 Electric field components j
f ου  

In Eq. (5.37), we argued that the game value sets the size of the charge gradient. More precisely, the 

game value sets the size of the electric field components , Eq. (5.35). We check that the electric field 

components (3.74) in the co-moving frame, Figure 5-16, match their initial values: 

  (5.56) 

The order and color code is that blue, red, green, yellow and purple represent  in the directions 

. The curves for green and yellow are on top of each other. The electric field 

determines the charge gradients . 

5.8.2 Proper charge components eα  

We call  charge gradients since from Table 4-1, Eq. (3.69), they determine the behaviors of the 

proper charges , Figure 5-17. The proper charges determine the mixed metric attributes, Eq. (3.51) 

that determines the relationship  between persistency components, Eq. (3.54). This 

relationship shows that the proper charges are persistency attributes and demonstrates that the initial 

values of the proper charge are set by the initial values of the orthonormal set. Our choice of zero flow 

for the two prisoner directions translates to their corresponding proper charges being zero at the origin. 

The other proper charges are not zero, as seen in Figure 5-17. The proper charges also contribute to the 

active metric, Eq. (3.72), which we deal with in section 5.9. 

 

 

Figure 5-17: Proper charges  in 

the co-moving frame 

 

Figure 5-18: The components  

in the normal-form frame 
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5.8.3 Inactive metric components jk
γ  

In sub-section 5.7.1 we showed that the bond compression volume decreased as the active strategy  

becomes negative in the co-moving frame. We can show that this is also true in the normal-form 

coordinate basis by looking at the behavior of the diagonal components of the inactive metric 

components  using Eq. (5.55), Figure 5-18. As before, the color code is that blue, red, green, yellow 

and purple represent  in the directions , respectively. We see that the diagonal 

components are all tending towards zero as we move left into the region that prisoner 1 becomes more 

engaged. The initial conditions were set assuming that the co-moving frame and normal-form frame were 

aligned at the origin. 

The gradient of the metric potential determines the off-diagonal initial values of the bond strain, Eq. 

(5.38) in terms of the known payoff values of the prisoner’s dilemma: 

  (5.57) 

 

 

Figure 5-19: The components 

 in the normal-form frame 

 

Figure 5-20: The flow components of 

the Killing vector  

The initial off-diagonal gradient components are set by the payoffs Eq. (5.34), while the diagonal 

components are set by the compression coefficients Eq. (5.39) and show the shrinking of the space to the 

left compared to the right (Figure 5-19). The color code is the same as Figure 5-18. We suggest that with 

all other variables constant, a change along the utility for prisoner 1 represents a distance measure of 

. Since the metric components go to zero on the left, we conclude that for two 

neighboring preferences at the origin compared to two neighboring preferences a distance to the left, there 

will be a perceived difference in distance as given by the connection components. These persistency 

components provide a mechanism for comparing utilities.  

These results follow from a detailed quantitative analysis of the dynamic forces at play in decision 

making processes. In particular, they show that the payoffs, which determine the relative strategies 

players choose, vary as a function of the strategic value chosen. This mechanism is a key ingredient of 

decision process theory, one not found in game theory. The variation of the gradient of the metric (Figure 

5-19) is clearly seen to produce a variation in the payoffs,  Eq. (5.34). Despite these variations as a 

function of position, the metric potential gradients are stationary as a function of proper time. 
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5.8.4 Inactive flow components 
jE
ο  

The behaviors of the metric potential are set by the persistency components Eq. (5.55). We gain 

further insight by looking in more detail at the behaviors of these persistency components. The flow 

components  as seen in the symmetric normal-form coordinate basis are determined, Table 4-1, 

Eq. (3.64), by the acceleration and the charge gradients. Since we take the initial acceleration to be zero, 

the initial gradient is determined by the charge gradients. Because we start with charge gradients for the 

two prisoners that are non-zero, we obtain non-zero flows away from zero, Figure 5-20. The color code is 

that blue, red, green, yellow and purple represent  in the directions , respectively. 

The flow components can be interpreted as the coupling or charge with which the payoffs contribute 

to the streamline equations in the symmetric normal-form coordinate basis, Eq. (1.75). These flows 

correspond to conserved charges . If we relax the condition in this model that there are codes of 

conduct strategies that are inactive, the corresponding flows will no longer be conserved. We get the 

important result that the players couple strongly away from the equilibrium point, which shows that game 

theory effects are strong away from such points. The charges for the two prisoners are opposite and equal 

for the model parameters chosen, though the equality is not significant since slightly changed initial 

conditions makes this equality disappear.  

The flow for positive values of  corresponds to player 2 being more aggressive: this player is more 

engaged than the other based on the active variable  in Eq. (5.17). The model consequence is that player 

2 demonstrates a greedy (negative) charge whereas player 1 demonstrates an accommodating (positive) 

charge. We view this result as important as decision process theory derives from game theory so we 

expect to see areas where game theory mechanisms are important.  

 

 

Figure 5-21: Prisoner 1 inactive 

Killing vector components 
 

 

Figure 5-22: Prisoner 2 inactive 

Killing vector components  

5.8.5 Inactive transformation components 
jE
α  

The spatial persistency components  that determine the transformation of the inactive strategies 

from the symmetric normal-form coordinate basis to the symmetric co-moving basis are determined by 

the compression and shear, Table 4-1, Eq. (3.67). We have already seen how the compression effect 

decreases the size of the transformation cube as we go to the left. Some evidence of this behavior is seen 

also in the components  for prisoner 1 in Figure 5-21, where the size of the proper direction for each 

player decreased in the symmetric co-moving frame. We have the color code blue, red, green, yellow and 

purple for the inactive directions  representing , respectively. Similarly in Figure 

5-22, we have the corresponding components for prisoner 2. In addition to the compression effects, the 

shear effects impose behaviors along the other directions. 
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5.8.6 Inactive determinant jkγ  

Certainly a main conclusion from our analysis is the striking configuration changes that depend on the 

active strategic value. This was exhibited in the co-moving frame by the behavior of the compression 

coefficient, Figure 5-10. Another measure of compression in the inactive space is the determinant of the 

inactive metric: 

  (5.58) 

This shows the same qualitative behavior, Figure 5-23. The invariant volume element is proportional to 

this determinant. Since this determinant goes to zero as we go left, it confirms that the yardsticks in the 

inactive space shrink in that direction. 

 

Figure 5-23: The determinant of the 

inactive metric 
 

 It also shows that the invariant volume 

shrinks if we go sufficiently far to the right. This 

is not so obvious from the behaviors that we 

have seen. A more detailed analysis shows that 

one of the eigenvalues of the metric is tending 

towards zero. Furthermore, the stresses are 

going to zero as we go far to the right.  

In these last sections we have been 

concerned with the stationary behaviors that are 

a consequence of the quasi-stationary hypothesis 

of the player fixed frame model. We have 

identified the ingredients that determine 

behaviors as inertia, stress, strain and 

persistence. We next discuss the active 

behaviors that correspond to proper time and the 

proper active relative player effort strategy. 

 

5.9 Dynamic behaviors 

Even in the stationary view of the quasi-static hypothesis for the player fixed frame model, we have seen 

that inertial behaviors dominate the mechanism by which structural stability is maintained. The inertial 

stresses lead to the strains that we observe in decision processes as strategic flows, payoff fields and new 

effects not yet identified with the predicted strains. Furthermore, we have seen that the notion of distance 

in decision processes, which we tie intimately with the concept of measuring utility, is not an absolute 

concept, but a relative concept that depends on the frame of reference. In rotating frames, where the rate 

of strategic flow changes, distances can appear shorter as seen by an observer who is not rotating. The 

concept that distances are relative is a consequence of the covariant nature of our decision process theory. 

This disconnects the underlying topological space from the quantitative measures of nearness. This 

connection is broken for our measure of time differences as well. However to see such effects, we need to 

turn to the dynamic behaviors of the theory. 

Not only are the flows dynamic in the sense that the stationary flows may exhibit accelerations, they 

are dynamic in the sense that they explicitly depend on time. In a gauge theory, measure of time intervals 

depends on the metric potential, Eq. (1.72). In this section we explore the dynamic behaviors that result 

from our decision process theory with numerical examples for the prisoner’s dilemma. The metric 

potentials are determined by the flow and coordinate transformations, so we start with their behaviors 

based on the streamline solutions to Table 4-1 provided in section 4.6. 

We have two results in common with the theory of relativity in physics: Our conception of time 

differences depends on frame and the metric potentials with which we analyze distances can form steady-

state waves. In both cases we rely on the relationship between the active metric and the transformations, 

Eq. (3.72): 

det jk jkγ γ γ= =

( )jkγ υ
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  (5.59) 

We observe that with the boundary conditions we have imposed for the prisoner’s dilemma, the 

components of the metric are initially: 

  (5.60) 

Distances in time result when we don’t change the active strategy: 

  (5.61) 

At our initial point (the origin), the metric  is determined from the proper charges, Figure 5-17. 

Because of the initial payoffs, this is non-zero and has a minimum at the origin. The origin is where the 

inertia is greatest and where the acceleration is zero. We now see this is where we expect time to move 

most slowly. 

In this section we show that in areas with large inertia, any quantitative measure of time slows down. 

Not all parts of the topology can be reached from a given starting point: boundaries are set by areas where 

the components of the metric field vanish. We show that steady-state wave solutions exist, exhibiting 

curvatures determined by these boundaries.  

To carry out our calculations, we have to expand what we mean by known conditions, section 5.5. 

Normally we would specify the flows and payoffs for all strategic values at a proper time of zero. We 

borrow however an idea from engineering, which is to create solutions that provide insight given our 

expectations that such normal specifications could be built up from harmonics starting with stationary 

solutions, solutions linear in time and then solutions built from harmonics or phasors. In mathematics, 

such solutions provide a Fourier analysis from which to build any solution, including the one of interest 

where we know the initial conditions. For our purposes, harmonics as approximated by the harmonic 

polynomials Eq. (4.98) for the streamline solutions of section 4.6 fulfill our need. We have only to specify 

which harmonic polynomials we will focus on. 

Unless stated otherwise, the illustrative results in this section are based on harmonic polynomials of 

degree . We consider proper times in the interval  and consider solutions that are linear on 

which there is a single harmonic added of frequency . For these solutions, we are not looking for 

an engineering solution to a particular problem. Rather we hope to survey the types of behaviors 

expected. We are free therefore to pick nominal values for the harmonic polynomials: 

  (5.62) 

These equations determine the behaviors away from the origin  of zero proper relative player effort. 

The linear terms are determined by ordinary differential equations whose initial conditions are set by the 

flow boundary conditions and the Gramm-Schmidt orthogonalization process described in section 5.5. 

Obviously many other choices other than Eq. (5.62) are possible, some of which will be discussed in 

section 5.10 where we do a sensitivity analysis of our results. 
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Figure 5-24: The flow along time, 

 

 

Figure 5-25: The contour plot for the 

flow along time,  

As a recap, the symmetric prisoner’s dilemma is formulated as a player fixed frame model using the 

quasi-stationary hypothesis. It is a single strategy model, whose streamline solutions and required scalar 

equations are detailed in section 4.6. We have considered the inertial behaviors Table 4-6 in section 5.6, 

the electromagnetic and tidal behaviors Table 4-4 and Table 4-5 that generate strain in section 5.7 and the 

persistent behaviors of Table 4-1 in section 5.8. In this section we use Table 4-1 to provide the dynamic 

behaviors of the flows  and the transformations  to the proper active direction that depend on the 

proper time. The partial differential equations that result are Eq. (4.112), whose solutions in terms of 

harmonic polynomials can be obtained from Eq. (4.144). The major result of this section is to show that 

these equations are effective tools to provide the time dependence of the theory. We are not currently 

aware that these techniques have been used elsewhere. 

5.9.1 Dynamic flows a
E ο  

We start by looking at the flow component for time as a function of both strategic direction  and 

proper time , Figure 5-24. We see two effects: first the general shape results from the linear terms. 

Without the harmonic polynomial contribution the flow would be independent of time. The strategic 

dependence is a consequence of the inertia and is distinct from the effects of the proper charge. The 

second effect is due to the single harmonic contribution that we have added to the holonomic time scalar 

. From the harmonic disturbance generated in time, a harmonic disturbance is also generated in space. 

We see the effects of the harmonic polynomial contribution more clearly in a contour plot for the time 

flow, Figure 5-25. In this contour plot, we see two peaks along the origin; away from the origin we see a 

small peak to the right. There is the start of a steady-state travelling wave that moves from the left to the 

right.  

To get a complete picture for the time component of the metric we need the component of flow along 

the active direction, which we take to be initially zero. Though for a linear solution the flow would remain 

zero, the harmonic polynomial contribution provides a non-zero oscillation for the flow, Figure 5-26. We 

see that the flow indeed starts at zero. The initial behavior set by the harmonic  for the distance 

behaves like  for the flow and thus starts at zero. Along the streamline from the origin, this 

harmonic behavior generates spatial oscillations that are clearly displayed based on our initial conditions. 

We see more clear evidence of the travelling waves. 
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Figure 5-26: The flow along the active 

strategy  

 

Figure 5-27: The contour plot for the 

flow along the active strategy  

The travelling wave behaviors are clearly visible in the contour plot, Figure 5-27. Here we see the 

distortions that reflect the difference between our wave equation, Eq. (4.112) and the usual wave 

equation. We see that the null lines between the peaks and troughs are not at right angles. Furthermore 

they bend at the boundaries at the left, determined by the vanishing of the inactive metric components. 

The direction of the travelling wave also bends due to the same boundary. If we think of the peaks as 

being places where inertia collects, then the motion of the inertial peak is the movement of energy 

density. This motion should be less than the maximum speed possible and should form an angle of greater 

than 45 degrees. 

5.9.2 Active metric components ab
g  

We have the main components of the metric , which is formed from the inverse of the metric 

components . The result, Figure 5-28, shows the inertial effect and proper charge effects, which are 

both static. On top of these two static effects is a ripple in the measurement of time due to the harmonic 

polynomial. Because of the ripple, there will be local minima in which inertia can be trapped. 

We see structure that is in addition to the big picture behavior of the trapping field formed from the 

stress and proper charges. Not only is our notion of time influenced by the acceleration frame, so is our 

notion of distances along the strategic direction, Figure 5-29, where the main components come from the 

transformation , Figure 5-30 and a somewhat smaller contribution from  not shown. As with the 

time flow, there is a static behavior on which there is a small ripple effect due to the harmonic polynomial 

contribution. It is significant that the wave equation properties one sees in physics are reflected here as 

well. Harmonic behavior in time leads to harmonic behavior in strategy space; harmonic behavior in 

space leads to harmonic behavior in time. Because the equations, though more complicated than the usual 

wave equations, are still linear we conclude that a localized event at an initial point in time and space will 

radiate outwards in both time and space.  
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Figure 5-28: The metric potential 

 
 

Figure 5-29: distance  versus time 

 for constant  contours 

 

In Figure 5-29, the horizontal curves represent constant values of proper time, while the vertical 

curves represent constant strategic values of proper relative player effort, which we call streamlines. If 

we think of the curves of constant proper time as representing events with the same “age”, we conclude 

that aging appears differently in the symmetric normal-form coordinate basis depending on the initial 

proper relative player effort, which follows from the dependence of the gradient of proper time with 

acceleration, Eq. (4.129), exercise 24 section 4.8. Roughly we can say that a decision process that occurs 

in an area of high energy density takes longer than the same process in an area of low energy density. 

The net effects can be computed for , Figure 5-31. There are boundaries of the space on the left 

and ripples on the right that propagate outward in time.  

 

 

Figure 5-30: The transformation of 

the active component  

 

Figure 5-31: The metric potential 

 

There are two general characteristics we glean from these calculations. First, we require a causality 

principle: signals between two points can’t go faster than a null-geodesic (exercise 11): . We see 

evidence that we approach this boundary when surfaces of constant proper time start to bunch together. 

Causality for decision processes is the common sense view that future events can’t be influenced by past 

events instantaneously: a sufficient time must pass for the future event to become aware of the past action. 

In decision process theory, the mechanism for communication stems from the wave function and the fact 

that there is finite maximum speed for signals to propagate. Such propagation effects will be observed 
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both in the metric potential fields as well as the payoff fields. They are analogous to gravitational waves 

and electromagnetic waves respectively.  

Secondly, we require the seemingly obvious principle of possible change at any point in space time, 

change is always possible. In other words, strategies can change in time. What makes this not so obvious 

is that strategies can’t change faster in time than a signal along the null geodesic. If the velocity along that 

null geodesic goes to zero, change becomes impossible. This occurs whenever streamlines begin to bunch 

together. We see evidence of this in Figure 5-29. As we get more bunching, we require  to become 

large or correspondingly  to approach zero, Eq. (5.73). We must have  as a requirement to 

enforce the principle of change (exercise 12).   

With these example behaviors using just a single harmonic polynomial contribution, we see dramatic 

changes in the character of the stationary solutions. We go from a solution with a single potential well to 

solutions with multiple wells. We might well think of this as analogous to galaxy formation. These 

additional pockets of structural stability are consequence of a single frequency dominating. To prove that 

this is so would be to investigate in more detail the initial spatial distributions.  It is not difficult to argue 

however that a pulse of events localized in time might be similar to a pulse located initially in space. Such 

a pulse would correspond to a number of frequencies around some common average frequency. In other 

words, we would argue that a single frequency might occur corresponding to a localized energy density 

distribution. Our figures are not too dissimilar to that set of assumptions. 

5.10 Sensitivity Analysis for dynamic behaviors 

We have provided an engineering view of the large scale structure of the solutions, not unlike the 

view taken by (Hawking & Ellis, 1973) of Einstein’s general theory of relativity. This provides insights 

quite different from those obtained using weak field approximations to these theories. Therefore, despite 

the simplicity of the model for the prisoner’s dilemma and the relative simplicity of the common good 

solution, we obtain non-simple structures in variations around this base. As part of our sensitivity analysis 

of stationary solutions in section 5.6, we introduced an alternative Nash solution, which illustrates 

additional characteristics. The major difference between the common good and Nash solutions was set by 

the initial strategies. We discussed the effect of setting the expected game value to zero in each case.  

In this section we investigate the sensitivity based on time dependent dynamic behaviors. To 

articulate the major possibilities, it will be sufficient to consider only the Nash solutions with a small 

initial pressure  and zero game value. By using a small initial pressure and zero game value, we 

suppress the effects we have already studied in section 5.6 that generate charge gradients. We use the 

harmonic parameter values used in section 5.9. They provide a baseline that facilitates our understanding 

of the effects. 

Table 5-1: Player stakes and decision beta choices for sensitivity analysis 

 Low  Baseline  High  

Low stakes    

Baseline stakes    

High stakes    

 

We consider different values for the game beta  and (equal) player stakes , which we 

choose from Table 5-1. These choices have a major impact on the time component  of the metric that 

determines the behavior of time intervals, Eq. (5.61). In a qualitative way we anticipate the effects from 

the numerical calculations by taking the first term of Eq. (5.59): 

  (5.63) 
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The first factor is determined by the proper charges, Table 4-1. We recall from our previous numerical 

results, Figure 5-17, that the initial proper charges are set by the initial flow; for those values of flow that 

are zero, the corresponding proper charges are zero. Thus we expect the first factor to be governed by . 

The second factor initially depends on the strains (since we have chosen the stresses to be very small). In 

particular the payoffs determine the (reduced) shear, Eq. (5.53). If we increase or decrease the payoffs by 

an order of magnitude, we expect these shear values to vary proportionately. 

5.10.1 Baseline 

So our rough expectation is that , an attribute of the inertial field, governs the first factor and , an 

attribute of the payoff field, also governs the second factor. The second factor gives rise to the harmonic 

behaviors. We start by examining the baseline form for the metric contour, Figure 5-32, for the Nash 

solution with small pressure  and zero game value. The focus area for the decision process, the 

allowed space of strategy values , is bounded below at approximately . Much below this 

the equations become singular. We can go much higher that , though it requires progressively more 

harmonic polynomial terms to get reliable results. We obtain a lattice picture that is truncated by the focus 

area. As in our previous dynamic calculations, we see the effects of our modified wave equation. 

 

 

Figure 5-32: Baseline contour plot for 

 

 

Figure 5-33: Baseline contour plot for 

the flow 
 

The baseline contour plot for the flow , Figure 5-33, displays an even more distinct lattice 

structure without the focus contribution from the proper charges. The lattice structure is by no means an 

obvious consequence of the partial differential equations Eq. (4.105). The result is a consequence of the 

acceleration being small so that the terms in the partial differential equation that depend explicitly on 

proper time can be ignored. This is not exact nor is the lattice dependence uniform. 
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Figure 5-34: Low stakes and low  

contour plot for the metric 
 

 

Figure 5-35: Low stakes and low  

contour plot for the flow  

5.10.2 Low stakes, high stakes 

To widen the focus area, we go to the case with low stakes and low , where we expect little 

contributions from the strain, little contributions from the proper charges (based on small ) and large 

contributions from the harmonic contribution. We get the expected result that the charge gradients are 

almost zero, the proper charges are small and the first factor in Eq. (5.63) is almost unity. The potential 

well comes almost entirely from the harmonic contribution; there is a negligible contribution from the 

initial shape of . This is clearly displayed in the contour plot, Figure 5-34. The focus area for 

the decision process is expanded from the baseline case. 

The contour plot shows lines of , such as the two that start at the origin. The light color 

indicates peaks and the dark color indicates valleys. For this case we replicate the harmonic wave 

equation and phasor solutions. The underlying lattice structure is seen more clearly in the flow , 

Figure 5-35. We see a hexagonal packing pattern. The light color areas indicate the path taken along the 

minimum of the potential, since the inverse square of the flow is approximately the metric component. 
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Figure 5-36: High stakes and low  

contour plot of 
 

 

Figure 5-37: High stakes and high  

contour plot of  

An alternative but not equivalent way to narrow the focus area is to consider high stakes and low . 

In this case we modify the shear components, which influence the time structure, the lattice pattern and 

narrow the focus area, Figure 5-36. As we move away from the origin along the strategic axis, there are 

progressively deeper potential well pockets, indicating a degree of instability. The energy generating 

these pockets comes from the payoffs and the assumption of high stakes. The higher stakes along with 

harmonics generates the effect. If we remove the harmonic contribution we don’t expect the same 

structure. The striking feature of the contour plot is the clover leaf pattern, an unexpected consequence of 

the partial differential equation. The clover leaf pattern is not distinct in the contour for .  

The final case we consider is high stakes and high , which has solutions for only a narrow range of 

the proper distance, approximately , Figure 5-37. Note that if we changed the solution to 

one in which the initial flow has each player confessing, , then we would also 

obtain a clover leaf pattern such as Figure 5-36. For high stakes and high , the focus area is smaller and 

structure is less distinct. For this case, there is even indication that space-time becomes disjoint. 

These are significant consequences and they are based on the size of the payoffs. They are in addition 

to the effects based on the relative values and the benefit to the players on the expected game values. In 

addition to the inertia effects associated with the energy density and pressure, there are consequences 

based on the  characteristic or speed of the flow, which is also a type of inertia. One reflects a tendency 

each player may have to favor certain strategies. This we associate with the energy density and pressure. 

A high inertia suggests that the players are reluctant to change their style of play. However, we might 

consider a version of chess in which there is a timer. This changes the speed at which the game is played. 

A very high speed version of chess would be a high stakes game, which introduces a very different aspect 

of the inertial fields.  

We speculate that the latter definition of inertia is significant in physical theories of cosmology. Early 

eras of the universe might be characterized primarily as radiation, so that this would correspond to a high 

 era. Things don’t clump together. In contrast, the current era would be a low  era. Galaxies have 

formed; there is a lot of clumping. These characteristics hold in decision processes. At very high speeds, 

clumping does not occur (compare Figure 5-36, clumping with Figure 5-37, and no clumping). Thus we 

believe the effects we have identified in this section are essential. Both the speed  and stakes  play a 

role that has not been accounted for in the standard game theory approaches. They determine the focus 

area and structure of the decision process.  
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In this and the last section, we have provided the time dependent dynamic behaviors we expect for the 

prisoner’s dilemma in the co-moving coordinate basis. In the next section we return to the original 

normal-form coordinate basis and examine the dynamic behaviors we expect for the payoffs. 

5.11 Normal-form behaviors 

There are many ways of investigating the dynamic behaviors in our decision process theory. If we are 

given the behaviors of the system at an initial point in time for all possible active strategy values, we can 

then compute the behavior of the system as a function of proper time. We equally well gain insight into 

the system by considering the behavior of the system as known at a single strategic point and all times, 

which for us is the presumed equilibrium point . The behavior of the system is predicted by the 

equations for all other strategic values . The latter approach leads to the former approach by 

superposing the harmonic solutions to achieve any given strategic behavior  of the system at initial 

proper time . This approach corresponds in concept to the phasor analysis of circuits in electrical 

engineering. Examining the response of a stable system to a known perturbation is also common in 

system dynamics, for example, (Senge, 1990). 

Recall from section 5.5 that initially, the flow represents the strategy choice of each prisoner, Figure 

5-38. One possibility is that this flow is constant. We explore dynamic possibilities by superposing a 

harmonic onto this constant behavior. The color code is that blue, red, green, yellow and purple represent 

the directions . We clearly see the assumption that each player starts with the 

strategy to not confess (blue and green), with no strategy to confess (red and yellow). The time strategy 

(purple) reflects the baseline value for . We see the code of conduct imposed that the flow to 

confess is zero and so these flows oscillate around zero. 

 

 

Figure 5-38: The flows for the 

prisoner’s dilemma in the original 

normal-form frame 

 

Figure 5-39: The flow for prisoner 1’s 

choice to confess as a function of   

The harmonic disturbance propagates outward in space, Figure 5-39. In this case we see that the focus 

area narrows causing the effects of the harmonics to damp out. Furthermore we see that at both extremes, 

the prisoner chooses some amount of the confess strategy. We expect to see these effects in the payoffs 

and other strain parameters. It will be more insightful if we consider the transformed version of the space, 

Eq. (5.16), with Eq. (5.17) for the behaviors that are internal to the decision process theory. 

In this basis we have the payoff field contributions , which can be determined from the co-

moving frame field , Table 4-1, Eq. (3.30): 

  (5.64) 

As expected, the stationary behavior of the numerator for the prisoner’s dilemma model parameters, 

Figure 5-16, is modified by the time dependence of the denominator. The behavior has by assumption the 
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single harmonic time dependence at , Figure 5-40. We see the harmonic wave in the figure for the 

electric field components. The color code is that blue, red, green, yellow and purple represent  in the 

directions . Notice that the electric field exhibits a travelling wave behavior. We 

explore such behaviors further in the next chapter.   

 

 

Figure 5-40: Electric field  

in the normal-form coordinate basis 
 

Figure 5-41: Electric field  

in the normal-form coordinate basis 

 

The rather small harmonic in  for example is seen to be damped out quickly. Most of the behavior 

of this electric field component is set by the restriction in size of the focus area. As we saw in section 

5.10 with the sensitivity analysis, higher stakes and a lower  along with a lower initial pressure at the 

origin all contribute to making the results more sensitive to the harmonic.  

 

 

Figure 5-42: High stakes low beta 

version of the electric field  
 

Figure 5-43: distance  versus time 

 for constant  streamlines 

If we use the same analysis as section 5.10, Table 5-1, for high stakes and low beta, we get a vastly 

different structure for the electric field component for , Figure 5-42. In both this and the previous figure 

we start with the same presumption of the time dependence as being stationary with a small harmonic. 

With high stakes and low , the system resonates or “rings” more dramatically and over longer (proper) 
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distances than in the former case. However, the physical size of the system is smaller, Figure 5-43. In 

some sense the system is more brittle when the stakes are high. 

Since the electric field components reflect and replace the concept of game value or expected payoffs, 

the brittleness reflects the risk inherent in such high stakes decision processes.  

5.12 Outcomes 

The student will have learned that the prisoner’s dilemma demonstrates that a player code of conduct 

can be imposed in decision process theory and such hypothesis leads to a “stable” set of solutions. The 

theory thus extends the notion of solutions based on Nash equilibrium in game theory, which provide 

another class of “stable” solutions. By adding a code of conduct to the prisoner’s dilemma, the player 

fixed frame model for the prisoner’s behaviors reduces to a single active strategy. Complete numerical 

solutions to these models are obtained that represent both stationary and non-stationary dynamic 

behaviors.  

The dynamical behaviors reflect both a topological ordering of time and strategic events that is 

common to game theory formulations as well as a measurement or gauge structure within this topology 

that provides a fabric on which decision events occur. The fabric construct, or connection, has both 

energy and momentum and influences and can be influenced by decision processes. The student will see 

from the numerical calculations, analytic evidence for inertial mechanisms associated with the stresses on 

the fabric and the speed  of the energy flow. Non game-theoretic results are obtained such as evidence 

for effects due to the stakes of the process as well as to the expected game value.  

Because systems that balance forces share energy from one part of the system to another, the student 

is led to the view that energy is the key transferable quantity that replaces the classical notion of game 

value (see the law of opportunity, section 7.7). All physical systems can transfer energy; the student will 

note that one form of that energy is the subject’s potential energy per unit charge and that in the prisoner’s 

dilemma model, it is closely related to the prisoner’s expected game value payoff. These inertial and 

payoff mechanisms are new and specific to the gauge theory framework adopted. 

By studying the numerical models, the student learns that the results are based on a causal evolution 

of behavior starting from an initial surface at zero proper time or equivalently, an initial surface at zero 

strategic distance (from a presumed equilibrium for example). This demonstrates that payoffs are 

functions of strategies that are in general different away from that initial surface. The allowed ranges are 

determined by the causality principle and the principle of possible change. 

In this chapter, the student will have learned a behaviorist (rather than a psychological) view of the 

prisoner’s dilemma and a formulation of this view inside a dynamic theory. The view was limited to the 

player fixed frame model and a single active strategy, which served to show that applying a code of 

conduct leads to stable solutions. The student should also appreciate that with the quasi-stationary 

hypothesis of section 4.5, all strategies can be active. The methods for solving these equations may 

require different numerical techniques (Courant & Hilbert, 1962). Mechanical and electrical engineering 

disciplines solve problems of a similar nature (Bhatti, 2005) and their techniques may be applied to the 

partial differential equations Eq. (4.94). Multiple active strategies introduce new attributes  from the 

commutation rules Eq. (4.75). Nevertheless, the same techniques of analyzing the solutions in terms of 

harmonic polynomials, Eq. (4.98) is possible using Mathematica© and the numerical method of lines,  

(Wolfram, 1992). 

The attainment of the outcomes of this chapter is facilitated by doing the exercises in the following 

section. Based on this investment, the student should achieve the more detailed outcomes below based on 

section. 

• In section 5.1, the student will have learned the relevance of altruism and egotism from 

(Thomas & Kane, 2008), where it is suggested that empirical investigations of human 

participants presented with prisoner-dilemma game situations have yielded interesting results 

that contradict standard game theory analysis (see (Sally, 1995) for a review). Some of these 

results have motivated so-called “psychological” game theories (e.g., (Dufwenberg & 
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Kirchsteiger, 1998); (Rabin, 1993)). The hallmark of these psychological frameworks is that 

they attempt to model players’ “fairness” or “kindness,” as well as each player’s beliefs about 

whether his or her own actions will be reciprocated with (un)kind or (un)fair actions. As 

(Rabin, 1993, p. 1281) notes in his psychological model, the notion of altruism can bear on 

the notion of fairness: “the same people who are altruistic to other altruistic people are also 

motivated to hurt those who hurt them” (emphasis in original).  

• In section 5.2, the student recalls the normal form of the prisoner’s dilemma. 

• This is followed in section 5.3 with ways of writing the payoffs and strategy vectors that are 

equivalent in game theory but whose consequences may be dynamically different in decision 

process theory.  

• The concept of the code of conduct is introduced in section 5.4. By identifying certain active 

strategies as dynamically inactive, an internal symmetry is introduced that is stable in the 

sense that small changes away from that choice lead to small changes in behaviors. This is a 

general property of the hyperbolic partial differential equations of the theory.  

• Hyperbolic partial differential equations have stable solutions given an appropriate 

specification of scalars on a hyperplane transverse to a time-like vector. The flow provides 

the time-like vector and the hyperplane is a surface transverse to the flow. The appropriate 

scalars are the transformations from the symmetric normal-form coordinate basis to the 

symmetric co-moving coordinate basis. The student will be able to set these appropriate 

values based on section 5.5: the student will be able to specify the known flows, set the 

values for the orientation potentials for the symmetric prisoner’s dilemma, transform these 

values from the symmetric normal-form coordinate basis to the symmetric co-moving 

orthonormal coordinate basis and deal with the specification of inertial. 

• From section 5.6, the student will be able to determine when inertial effects are needed to 

support a code of conduct or non-zero game values. To obtain a solution of the prisoner’s 

dilemma that supports the common good of the prisoners, one must have inertial or stress 

effects to overcome centrifugal effects due to the charge gradients . To obtain fair 

solutions that are based on self-interest and reflect the Nash equilibrium, no such inertial 

effects are needed. 

• From section 5.7, the student will learn the importance of the strains that are the results of the 

inertial stresses. In the quasi-stationary hypothesis, the strains are stationary and are 

determined from the known conditions. Compression components and charge gradients result 

from payoffs and equilibrium strategies that are not Nash equilibriums. Such components 

generate inertial attractive effects similar to gravity as well as repulsive effects due to 

pressure gradients. Shear effects are present as well, which in the symmetric prisoner’s 

dilemma are attributes of the initial payoffs.  

• From section 5.8, the student will be able to trace the effects of the stresses and strains in the 

theory to the persistency components . The student will understand the 

mechanism that generates the important new effect in decision process theory that payoff 

values change as a function of strategy. The student will also understand the mechanism for 

charge or coupling that determines the size of game theory effects in the theory. A result that 

has possibly wider applicability is that an aggressive player displays a greedy charge whereas 

the other player has an accommodating charge. 

• From section 5.9, the student learns from a simple example that harmonics, approximated by 

harmonic polynomials generate substantially new behaviors that require two principles: 

causality and change. The behaviors also demonstrate that in decision process theory, the 

measurement of time is relative to the frame of reference as is the measurement of space. 

Dynamic behavior exhibits two related principles: the principle of causality and the principle 

of possible change. Both refer to the characteristic of decision process theory that the 
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mechanism of communication is by sending signals that must travel at a non-zero but finite 

speed, which is set by the transmission speed of the wave equations. 

• In section 5.10, from a sensitivity analysis the student learns that there are significant 

dynamic effects related to the stakes associated with a decision. Qualitative new behavior are 

exhibited when the stakes are sufficiently high. This is in marked contrast to game theory 

where the stakes have no strategic effect. 

• In section 5.11 the student learns the behaviors expected for the prisoner’s dilemma in the 

original normal-form coordinate basis. The code of conduct imposed on the solution is now 

clearly visible. The student learns that the concept of game values are effectively replaced in 

decision process theory by the electric field payoff values. 

5.13 Exercises 

1. Show that the transformation  converts the coordinates in the seven dimensions of time and 

space for the prisoner’s dilemma to Eq. (5.16), where the order of the coordinates is { , , , 

, , , }: 

  (5.65) 

2. Show that the new basis coordinates  and the new payoff fields  are determined by the 

transformation  in exercise 1, where for the payoff fields we restrict the transformation to 

exclude the player inactive strategies: 

  (5.66) 

3. Show that the transformation from the basis of Eq. (5.16) to that of Eq. (5.17) is accomplished 

through the transformation  below, with the transformations of the coordinates and payoffs 

being expressed analogously to Eq. (5.66): 

  (5.67) 

4. In this section, we have chosen the code of conduct based on the differences between the strategy 

to confess and the strategy to not confess. Rewrite the model and find the appropriate 

transformations if the code of conduct is to pick as inactive the strategy to confess for player 1 

and the corresponding strategy for player 2. 

5. Show that a model equivalent to the prisoner’s dilemma is that of two players who have the 

choice to honor a contract or break the contract. This scenario is significantly more general than 

the prisoner’s dilemma and underlies the invisible hand of (Smith, 1776).  
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6. For numerical work, the computations go faster if we have differential equations for  and 

 even if these are given in terms of the inactive metric and  and  respectively. Show 

that the differential equations are: 

  (5.68) 

7. Show that for the general case, the bond compression component , Eq. (5.48), satisfies the 

following equation: 

  (5.69) 

8. Show that for the general case, the bond shear components , (5.48), satisfy the following 

equation: 

  (5.70) 

9. Show that for the streamline solutions of section 4.5, the bond shear and bond compression can 

be written in terms of potentials as follows: 

  (5.71) 

10. Using the substitution defining the reduced bond shear potential  in terms of the function  

satisfying the first equation below, show that the equation for the reduced bond shear becomes as 

follows for the streamline solutions of section 4.5. In particular, this may hold when there is only 

a single active strategy or more generally, if all the compression matrices are proportional to each 

other: 

  (5.72) 

11. The fastest signal between two points is along the null geodesic direction . If 

equally spaced surfaces of constant proper time become compressed so that the corresponding 

intervals of time shrink, then show that the corresponding size of  must grow to compensate. 

As a consequence, show that one expects that 0
tt

g → . The limit corresponds to the velocity 

along the null geodesic going to infinity. The causality principle is that this limit is not reached 

and 0
tt

g > . For a single active dimension, show that the velocity along the null direction is: 
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  (5.73) 

12.  Use Eq. (5.73) and the previous exercise to show that the requirement of a non-zero velocity 

along the null geodesic requires . This is the principle of possible change that means any 

physical point must be able to move. 

13. Show that for streamlines that have speeds close to unity in natural units, the causality principle 

narrows the size of the space: one gets a picture not unlike the physics picture of the big bang 

with a singularity at some finite point in the past in which space has zero size. 

14. Show numerically that the speed along the null geodesics is  as seen in the proper distance—

proper time plane. In the physical space, this corresponds to going along the diagonals of the 

contour mesh.  

15. As an example of exercise 14, take the model of section 5.11 having high stakes and low beta and 

deduce that the vector direction  along  transformed to the co-moving frame is given by 

, Figure 5-44. There are clearly three areas where the magnitude of the vector 

vanishes, corresponding to where the streamlines bunch in Figure 5-43. Also show that the speed 

of null direction , Eq. (5.73), is given by Figure 5-45. How do the corresponding speeds  

behave? Show that the speeds can exceed unity, though they shouldn’t become infinite. 

 

Figure 5-44: Vector field  in 

the co-moving frame 

 

Figure 5-45: High stakes, low , null 

direction speed  

16. Show that the active metric components Eq. (5.59) can be effectively written as the product of 

three matrices and so the determinant is given as stated below. Since for reasonable values of the 

variables, the determinant should not vanish or change sign, conclude that the coordinate vector 

along  can’t vanish. What does this imply for exercise 15?  

  (5.74) 

17. Show that another way to examine the behavior of high stakes and low  in exercise 15 is to 

look at the timeline and spaceline contours, Figure 5-46, associated with the time vector 

, (“vertical” timelines) and the space vector , (“horizontal” spacelines). 
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Figure 5-46: Coordinate timelines and 

spacelines for high stakes and low  

 

Figure 5-47: Pressure for high stakes and 

low  

  

18. For high stakes and low  in exercise 15, show that the pressure, which is a function only of  

is not static, but has the shape given by Figure 5-47. Note that the pressure is in fact constant 

along each of the streamlines. 

19. The proper time  and the proper distance  are each scalar functions. As an 

example, show that for high stakes and low  the scalar functions are given by Figure 5-48 and 

Figure 5-49, respectively. 

 

Figure 5-48: Proper time  for high 

stakes and low  

 

Figure 5-49: Proper distance  for 

high stakes and low  

20. For the examples given in the text, the flow  along  need not be zero. Show that for high 

stakes and low , the behavior remains harmonic as seen in the normal coordinate basis, Figure 

5-50. For high stakes and high  show that the behavior is Figure 5-51. 
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Figure 5-50: Flow along  the focus 

direction for high stakes and low  

 

Figure 5-51: Flow along the focus  

direction for high stakes and high  

21. As seen in the previous exercise 21, for high stakes and high , the scalar functions for proper 

time  and proper distance  take on strikingly new behaviors. Show that they are 

given by Figure 5-52 and Figure 5-53 respectively. What are the allowed regions? Argue that 

certain regions are excluded and indicate why.  

 

Figure 5-52: Proper time  for high 

stakes and high  

 

Figure 5-53: Proper distance  for 

high stakes and high  

 

22. Proper time as defined in section 4.5.2 is defined in terms of a specific path, the streamline. For 

the case of high stakes and small , Figure 5-43, we can arrive at approximately the same point 

by two distinct streamlines from approximately the same start. In this case we expect that the 

proper times might be different since the coordinate  is not exact (section 4.2, Eq. (4.8)). 

Show that the figure shows evidence for this behavior. Pay particular attention to where the 

streamlines bunch together. Why is the flow not an exact differential?   
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