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7 Process formulation 

In this chapter, we sketch a general review of game theory and economic approaches to provide a 
further basis for the arguments provided in the previous chapters based on two rather simplified models. 
Though the models are simple, the analysis was based on a detailed and complete decision process theory 
from which one can study any decision process. We suggest that this general review provides further 
support for the theory. 

We may ask whether we have sufficient information, insight and understanding to apply this theory to 
real world applications. For example we have analyzed the Prisoner’s Dilemma in some detail (chapter 5). 
We noted that the Prisoner’s Dilemma is a real paradox (section 5.6) for game theory. The Nash 
equilibrium for this game corresponds to the prisoners choosing options which are not in their public-
interest. They both confess, which provides each a worse outcome than if they remained silent. The value 
of a paradox is that it forces us to ask “what is missing?” Based on that inquiry, we expanded our 
understanding. Since we are able to describe situations in which the prisoners don’t confess, we have 
resolved the dilemma and have added something in our theory that is absent in game theory. We have not 
yet fully articulated these additions. In this section, we explore in more depth the concepts of game theory 
with the goal in mind of bringing forth such additions that are essentially conceptual issues. We base this 
in part on a selected review of the literature. 

7.1 Historical review 

Operationally, since our decision process theory goes beyond static or equilibrium behaviors, we 
know our solutions diverge from the literature. We differ markedly from the original treatment of (Von 
Neumann & Morgenstern, 1944) as well as from the extensions of (Nash, 1951).  Our taxonomy in 
chapter 6 identifies many possible solutions that are not present in game theory, though this collection 
only scratches the surface of the solutions to the field equations presented in Eq. (2.31). The taxonomy 
(section 6.1) provides an enumeration and detailing of the steps needed in order to apply our decision 

process theory to practical situations and helps provide a clearer relationship of our decision process 

theory to game theory.  
However, much of the enumeration and detailing can be taken from the existing literature. An 

examination of the literature is therefore essential, even though it won’t necessarily help to identify 
conceptual differences between our decision process theory and game theory. To get at the conceptual 
issues, the historical context of game theory and its relationship to the decision process theory is 
explored. We start with an inquiry into both the context of game theory and earlier contexts that in some 
cases relate more directly to the approach we have taken with decision process theory.  

We start with (Von Neumann & Morgenstern, 1944). This classic work spawned what is considered 
game theory and a significant amount of subsequent work, which is well reviewed in the text by (Luce & 
Raiffa, 1957). Their treatment is extremely helpful to us, though perhaps out of date since it leaves out 
significant progress in certain areas. A more recent and mathematically oriented textbook by (Myerson, 
1991) fills in many of these gaps. Two elementary and extremely accessible primers that are useful for 
applying the ideas of game theory to practical applications are (Dresher, 1981) and (Williams, 1966). 
Another text that we found helpful was (Osborne & Rubinstein, 1994). It demonstrates how game theory 
has been applied to fields other than economics. In this same context we found (Ordeshook, 1986) and 
(Shubik, 1991) also illuminating. 



The Dynamics of Decision Processes 

 

183 
 

A graphic presentation from the standpoint of setting the historical context is the survey of game 

theory (or as he would see it termed, interactive decision theory) during the 20th Century provided by 
(Aumann, 1989, p. 1). His outline provides a wonderful overview organized into five main time frames: 

• “1910-1930 
o Exclusive Form 
o Strategies 
o Strategic Form 
o Randomized Strategies 
o Individual Rationality 
o Zermelo’s Theorem 
o The Minimax Theorem 

• “1930-1950 
o Cooperative Games 
o Coalitional Form 
o Solution Concepts 
o Domination, the Core and Imputations 
o Stable Sets 
o Transferable Utility 
o Single Play 
o Expected Utility 
o Applications 
o Continuum of Pure Strategies 
o Computational Methods 
o Mathematical Methods 

• “1950-1960 
o Strategic Equilibrium 
o Stochastic and other Dynamic Games 
o Repeated Games 
o The Prisoner’s Dilemma 
o Nash’s Bargaining Problem 
o The Shapely Value 
o Axiomatics 

• “1960-1970 
o NTU (Non-Transferable Utility) 
o Coalitional Games and NTU Value 
o Incomplete Information 
o Common Knowledge 
o Bargaining Set, Kernel Nucleolus 
o The Equivalence Principle 
o Many Players 
o Cores of Finite Games and Markets 

• “1970-1986 
o Biology 
o Randomization as an Expression of Ignorance 
o Refinements of Strategic Equilibrium 
o Bounded Rationality 
o Distributed Computing 
o Consistency 
o Cost Allocation” 

As in any book or article, there will be biases and restrictions based on the focus. Many books and 
articles on game theory, such as the one above, have a context set by (Von Neumann & Morgenstern, 
1944). For our purposes, however, there are additions that should be added that reflect different biases 
and advances since the article by (Aumann, 1989) was written: 

• Greek Philosophy, economics, (Cameron, 2008) 

• Chinese Art of War, (Tzu, 1988), also see (Myerson, 1991) 

• The Necessity of the Wager, (Pascal, 1670)  

• Utility (Bernoulli, 1738) 

• Bayes Theorem (Bayes, 1764) 
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• The Invisible Hand, (Smith, 1776) 

• Decision Theory (Condorcet, 1793), from (Hansson, 1994) 

• Greatest Good (Bentham, 1829) 

• Happiness (Edgeworth, 1881) 

• (Zermelo, 1913), see (Myerson, 1991) 

• (Borel, 1921), see (Myerson, 1991) 

• Statistical Methods, (Fisher, 1925) 

• Nash Equilibrium, (Nash, 1951) 

• Objective Probability, 1926, see (Ramsey, 1964) 

• Systems Dynamics (Forrester, 1961) 

• Decision Analysis (Howard, 1964) 

• Club of Rome, (Meadows, Meadows, Randers, & Behrens, 1972) 

• Maximization, John Maynard Smith, 1982, see (Myerson, 1991) 

• Learning Organizations, (Senge, 1990) 
We see from the above time lines that the theory of making decisions is part of a philosophical 

conversation that has been going on in different countries for over a thousand years. We point to the Art 
of War, (Tzu, 1988) in China, written over 2000 years ago and the Greek philosopher Xenophon, 4 B.C., 
cf. (Cameron, 2008), as examples. The modern form of Game Theory starts with (Zermelo, 1913), (Borel, 
1921) and (Von Neumann J. , 1928).  

Decision making is about making a choice now that will lead to consequences in the future. It is 
presumed that we make choices to obtain certain desired outcome in that future. As in engineering 
problems, it is not always possible to frame the desired outcome as a single number or attribute. 
Nevertheless, for any given set of desired outcomes, there is an advantage to someone who is adept at 
predicting the consequences of any decision. 

We frame the modern debate as one between predictions being made based on probability arguments 
(Bayes, 1764) or based on process arguments such as (Edgeworth, 1881) starting in the 18th and 19th 
century. This debate may well extend further back into history. What we find relevant is that both 
approaches open up intriguing insights and both have serious flaws. The key is to synthesize these ideas 
into a consistent theory and test that theory against observation. 

The issue of predicting the future based on probability versus knowledge of process is not restricted 
to the field of decision making. It has occurred in other fields where knowledge of the future would be 
helpful if not critical. A good example is the simple question of predicting the weather, the accuracy of 
which can have a strong and positive economic impact. For many years, weather was forecast based on 
probability as provided by past history recorded in the Farmer’s Almanac. Modern meteorology adopted a 
process view by Bjerknes, (Friedman, 1989), who argued that using the underlying processes of fluids 
and thermodynamics one could vastly improve weather predictions. He used physical or process models, 
models based on the principle of least action, which are the basis of today’s weather predictions. Though 
statistical evidence and the probability view are still important, the process view changes the paradigm 
from the Farmer’s Almanac. 

In the industrial community, there are large organizations that also predict the future based on 
statistical data and Bayesian probability. For example organizations may predict the number of resources 
needed to deliver a product as well as the expected delivery date. Based purely on statistical-historical 
data (probability view), companies will use such data to make financial commitments. However, by 
contrast, there are organizations, (Senge, 1990), that use a process approach based on System Dynamics 
(Forrester, 1961) on which to base commitments. It is not surprising that these two camps oppose each 
other. For example, the inventor of modern statistical methods, (Fisher, 1925), was strongly opposed to 
what he termed inverse probability (Bayesian probability, Cf. section 7.3). 

For decision process theory, we look at game theory in a way that is distinct and different from much 
of the recent literature, which has focused more on this Bayesian approach and is somewhat opposed to, 
or at least suspicious of, the process camp. Like debates in other areas, one approach is not necessarily 
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wrong and the other right: each brings useful and indeed essential insights to the table. It is clear that the 
utilitarian school (Bentham, 1829) was not adequate to deal with the complexities of decisions; it lacked 
the advances in understanding of what constitutes a decision and the precision of language introduced by 
(Von Neumann & Morgenstern, 1944) that articulated this understanding.  

It is our view however that to make further progress, we need to return to the process approach. In the 
following sections, we pick out topics from the above time lines that help support this viewpoint. We start 
with one of the cornerstones of modern economic thought, the invisible hand (Smith, 1776) and explore 
its underlying assumptions. 

7.2 Code of conduct 

We gain a better appreciation of self-interest and public-interest in our decision process theory by 
looking at their historical context. We start with the related concept of the invisible hand, (Smith, 1776). 
It is a view of a free market that even though individuals pursue their self-interest, the public-interests will 
be served. It is remarkably similar to the game theory concept that each person’s goal is to maximize their 
gain. The game theory caveat is that each player understands that other players are attempting to do the 
same, so each player must consider all the worst options and choose from them the best. We have seen 
with the prisoner’s dilemma, the paradox that arises (chapter 5) when the prisoners’ pursuit of their own 
self-interest leads to a less than optimal choice for their public-interest. The only out for economics in 
general and game theory in particular, is to believe that there are hidden forces at play that enforce the 
public-interest, namely the invisible hand. 

7.2.1 Adam Smith—the invisible hand 

An essay by (Joyce, 2001) articulates these ideas in the historical context and points to the relevance 
of contracts and codes of conduct with the concept of the invisible hand: 

“...every individual necessarily labours to render the annual revenue of the society as great as he can. He generally, 

indeed, neither intends to promote the public-interest, nor knows how much he is promoting it. By preferring the support of 

domestic to that of foreign industry, he intends only his own security; and by directing that industry in such a manner as its 

produce may be of the greatest value, he intends only his own gain and he is in this, as in many other cases, led by an 

invisible hand to promote an end which was no part of his intention. Nor is it always the worse for the society that it was no 

part of it. By pursuing his own interest he frequently promotes that of the society more effectually than when he really 

intends to promote it. I have never known much good done by those who affected to trade for the public good. 

“In this passage, taken from his 1776 book An Inquiry into the Nature and Causes of the Wealth of Nations [ (Smith, 
1776)] Adam Smith set out the mechanism by which he felt economic society operated. Each individual strives to become 
wealthy ‘intending only his own gain’ but to this end he must exchange what he owns or produces with others who 
sufficiently value what he has to offer; in this way, by division of labour and a free market, public-interest is advanced.” 
We see Adam Smith’s insight as well as his limitations (Joyce, 2001). The idea of becoming wealthy 

is based on self-interest and assumes that actions such as stealing are forbidden. The possibility of wealth 
requires that strict laws be in place. Again we quote (Joyce, 2001): 

“Smith was profoundly religious and saw the ‘invisible hand’ as the mechanism by which a benevolent God 
administered a universe in which human happiness was maximised. He made it clear in his writings that quite 
considerable structure was required in society before the invisible hand mechanism could work efficiently. For 
example, property rights must be strong and there must be widespread adherence to moral norms, such as prohibitions 
against theft and misrepresentation. Theft was, to Smith, the worst crime of all, even though a poor man stealing from a 
rich man may increase overall happiness. He even went so far as to say that the purpose of government is to defend the 
rich from the poor.” 

In a well ordered society, self-interest would in fact serve the public-interest if the society has in place 
persistent rules or codes of conduct. These rules in our decision process theory correspond to strategies 
that are inactive and persistent. The existence of such rules assumes a level of trust among all members of 
society that nobody will violate that trust. These persistent rules may operate between individuals, 
families, cities, nations or regions. Even though it is possible to imagine rules that don’t promote the 
public-interest, for the public-interest to be supported there must exist some rules that all generally adhere 
to. 

We get the following concise summary of Smith’s assumptions (Joyce, 2001) and her conclusion 
along with our comments in square brackets of the relevance to our decision process theory: 



 © 2012-2015 Gerald H Thomas  

186 
 

• “There is a benevolent deity who administers the world in such a way as to maximise human happiness. [We 
replace the benevolent deity with the physical world in which the principle of least action operates at every level 
of organization.] 

• “In order to do this he has created humans with a nature that leads them to act in a certain way. [We replace 
human nature with the idea of persistency, which leads to the concept of a payoff field that summarizes an 
individual’s approach to decisions.] 

• “The world as we know it is pretty much perfect and everyone is about equally happy. In particular, the rich are no 
happier than the poor. [Our decision process theory agrees only in the sense that it makes no distinction between 
rich or poor in terms of the mechanisms that operate.] 

• “Although this means we should all be happy with our lot in life, our nature (which, remember, was created by 
God for the purpose of maximising happiness) leads us to think that we would be happier if we were wealthier. 
[We would say that this and the following statement are about dynamics and change. We provide more physical 
mechanisms to describe these.] 

• “This is a good thing, because it leads us to struggle to become wealthier, thus increasing the sum total of human 
happiness via the mechanisms of exchange and division of labour. 

“It is clear why Smith says that moral norms are necessary for such a system to work − in order for exchange to 
proceed, contracts must be enforceable, people must have good access to information about the products and services 
available and the rule of law must hold.” 

Thus, the invisible hand mechanism works by encouraging entrepreneurs to respond to what consumers 
want. In this way the entrepreneur becomes wealthy. The entrepreneur assumes however that when 
delivering goods, he will be paid. The consumer assumes that when he pays for goods, they will be 
delivered. The consumer assumes further that the entrepreneur is truthful about what his product will do 
and honest about what the cost of that product will be. 

It is certainly possible to imagine people whose goal in life is to be helpful. There are altruistic people 
with good intentions. There are also people whose goal in life is to look after their own welfare. These are 
self-interested people. Smith envisions these two types of people (Joyce, 2001): 

“One extremely positive aspect of a market−based economy is that it forces people to think about what other people 
want. Smith saw this as a large part of what was good about the invisible hand mechanism. He identified two ways to obtain 
the help and co−operation of other people, upon which we all depend constantly. The first way is to appeal to the 
benevolence and goodwill of others. To do this a person must often act in a servile and fawning way, which Smith found 
repulsive and he claimed it generally meets with very limited success. The second way is to appeal instead to other people's 
self−interest. In one of his most famous quotes: 

“Man has almost constant occasion for the help of his brethren and it is in vain for him to expect it from their 

benevolence only. He will be more likely to prevail if he can interest their self−love in his favour and show them that it is for 

their own advantage to do for him what he requires of them. Whoever offers to another a bargain of any kind, proposes to 

do this. Give me what I want and you shall have this which you want, is the meaning of every such offer; and it is the 

manner that we obtain from one another the far greater part of those good offices which we stand in need of. It is not from 

the benevolence of the butcher, the brewer, or the baker that we expect our dinner, but from their regard to their own 

interest. We address ourselves, not to their humanity but to their self−love.” 

In other words, Smith assumes that most of us will not respond to an altruistic appeal. Rather we will 
respond when we see some advantage to self. In this view however, Smith ignores his separate view that 
contracts must be respected. If we dishonor contracts, there would be no basis for the free market. The 
honoring of contracts requires an appeal to our humanity. We must simultaneously pay attention to our 
self-interest and our public-interest. There must be a balance. This is required by his “considerable 
structure” necessary to support the invisible hand. 

7.2.2 Prisoner’s dilemma and the tragedy of the commons 

Thus we see the important distinction relevant to our decision process theory. There are underlying 
assumptions made to any exposition of economics or game theory: There is either a person’s humanity or 
their self-love. What we add to Smith’s view is the need to make the invisible hand visible: we must 
explicitly identify the strategies that relate to the code of conduct. We must separately identify the 
strategies that relate to our self-interest. Both sets of strategies are always in play. 

It is directly relevant to our discussion here that (Joyce, 2001) brings up the connection of the 
invisible hand and the prisoner’s dilemma: 

“Two people, who are suspected of being accomplices in a crime, are held prisoner in separate, non−communicating 
cells. The police visit each prisoner and tell both that if neither confesses, each will be sentenced to two years in jail. 
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However, if exactly one prisoner confesses, implicating each other, the one who confesses will get off scot−free as a reward 
and the other, who didn't confess, will receive a punitive sentence of five years. If each confesses and implicates the other, 
both will be sentenced to three years.” 

This is a variant of our version of the prisoner’s dilemma in section 1.4, which we dealt with in greater 
detail in chapter 5. She ties the prisoner’s dilemma to Adam Smith’s invisible hand and relates it to 
specific examples starting with the temptation to default: 

“We can think of the prisoners as being asked to decide whether to keep a contract they have made with each other 
(remain silent) or to default (confess and betray the other). Similar choices have to be made all the time in economic 
society. When two people freely agree to exchange goods or services to their mutual benefit, each must decide whether 
to try to cheat the other by defaulting, or handing over counterfeit goods, or whether to act in good faith and risk the 
other party defaulting. Obviously, both parties are better off if neither default than if both default − after all, we 
suppose they willingly contracted with each other − but each would like to get something for nothing and each is afraid 
the other will feel the same. The result may well be that the parties are unable to carry out the exchange as arranged and 
both lose out.” 

This is no longer just the prisoner’s dilemma, but a question of ordinary commerce. The broader 
question is whether in ordinary commerce, the buyer and seller will both act in good faith or whether one 
or both will default. The game theory answer taken from the prisoner’s dilemma is that both will default. 
Paradoxically, with the free market, Adam Smith was arguing in favor of both acting in good faith. They 
would hold to his strong belief that contracts would always be honored. The prisoners would not confess, 
yet Smith maintains they also would act always in their self-interest. Hence we have the paradox. 

Contracts (Joyce, 2001) are enforced in our society not by an invisible hand but by the courts and 
other government entities that are brought in when contracts are not honored: 

“Enforcing laws of contract requires cooperation and resources from someone else − in democratic societies, the courts 
on behalf of the government and the people. But courts and prisons and police cost money and most of the costs fall on 
people who were not party to the contract in the first place − who are therefore paying for a service that doesn't directly 
benefit themselves. Such courts fall into the category of "public good" − we are all better off in a society where the rule of 
law is upheld − but are not created and maintained by any invisible hand mechanism. Courts are set up deliberately to carry 
out a public good; and, although they may not always work the way they are intended to, there is nothing unintended about 
their use to enforce contracts.” 

In addition to the temptation to default, (Joyce, 2001) suggests another example of the prisoner’s 
dilemma, subsidy-seeking. She argues that in democratic societies, there can be special interest groups 
that lobby the government for money for their particular interest: 

“In a democratic society, there is a strong temptation for "special−interest" groups to form and lobby the 
government to provide tax−payers' money to the group in the form of subsidies. Politicians find the prospect of buying 
the loyalty of the group attractive and the group sees the prospect of getting other people's money for nothing. Clearly, 
everyone would be better off if no one sought subsidies − by definition, subsidies are only needed for unprofitable 
activities, that is, activities that other people do not value sufficiently to pay their own money for. However, if other 
people seek and gain subsidies, anyone who doesn't bother trying to do the same for themselves will end up subsidising 
others while receiving no subsidies themselves. This fear may force large numbers of people to spend their time 
lobbying the government for subsidies, rather than simply engaging in more profitable activities − a classic example of 
the Prisoner's Dilemma and one over which no court has jurisdiction. 

“A very similar situation occurs regarding monopolies. Since pretty much every producer is a consumer, it is 
probably to everybody's benefit overall if no producers attempt to raise prices by monopolising their market; however, 
attempting to enforce a monopoly can be very attractive to individual producers. Smith rather sardonically observed 
that 

"People of the same trade seldom meet together even for merriment and diversion, but the conversation ends in a 

conspiracy against the public or some contrivance to raise prices." 

Looked at in context, our choice of solutions with at least two additional persistent (inactive) 
strategies for the prisoner’s dilemma in chapter 5 is understandable. The contract for each prisoner is to 
not confess, so that the total number of active strategies is reduced from four to two. We in fact chose one 
additional strategy to be inactive (the total effort equal to the sum of all strategies). The only active 
strategy left in this problem in which the players can exercise their self-interest is the relative effort. Of 
course if we consider problems with more strategic choices available to each player, we get a more 
interesting result after we allow for the contract or code of conduct restrictions. 

We thus learn a great deal from (Joyce, 2001) about the invisible hand and its relationship to the 
prisoner’s dilemma. It agrees with an earlier observation (Rapoport, 1989, p. 199) that the prisoner’s 
dilemma is a version of the tragedy of the commons. If a farmer allows just one more cow to graze on the 
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commons than what has been agreed to, he benefits. However if every farmer were to do this, all would 
lose because at that point the land would be over grazed. The prisoner’s dilemma scenario is not at all 
uncommon, but one example of the tragedy of the commons. There are many examples (Joyce, 2001), to 
which we add a few more. 

7.2.3 Tragedy of the commons—the blame game 

The first example is what is termed the blame game. A team of two people engage in an activity and 
they collectively fail. For example a team sport such as doubles tennis. The most productive outcome for 
both is to assess what went wrong and fix it before the next game. However there is a positive, albeit 
selfish and unproductive outcome for one if he can pin the blame on the other player. Of course this is 
symmetric and the other player knows that he too would personally benefit if he could pin the blame on 
the other. If they both end up claiming the other is at fault however, they both come off poorly, though 
not as poorly as if they have the blame pinned on themselves with no retort. They would be best served 
with a coach that gives the team focus on winning their sport. A good coach would enforce a code of 

conduct. The coach’s efforts are positive and constructive even though the coach may have no direct role 
in the decisions made on the court during the game. 

If the players adhere to a code of conduct that involves not playing the blame game, then they will be 
better off in their endeavors playing tennis. We emphasize that the blame game is not directly associated 
with the game of tennis on the court. We think this is a general rule that a code of conduct, such as 
adherence to contracts, is not necessarily related to the business of transactions. So it is not directly 
associated with the accumulation of wealth in business, but indirectly it is required. The adherence to 
contracts (Smith, 1776) is required for the accumulation of wealth. 

7.2.4 Tragedy of the commons—the freeway game 

A second example is the freeway game. We think it obvious that in general, people would get to their 
destination faster and safer if they adhered to certain courtesies while driving. However, in a world where 
all adhere, there is an advantage to one individual who does not. This leads to the behavior that most 
don’t adhere to such courtesies and we have another example of the tragedy of the commons. 

7.2.5 Tragedy of the commons—the political commentary game 

A third example is the political commentary game. Two people can engage in a conversation that is 
constructive, that involves active listening and leads to new insights. However this again assumes a basic 
code of conduct. Each person can abuse the listening of the conversation by directing it towards their own 
self-interest. They play the “it is all about me” conversation game. They achieve a gain over all others 
assuming that the others acquiesce and listen. Each person however “sees” the same possibility and the 
outcome can easily be that all engage in the game of the me-conversation. Television talk shows 
purporting to provide political commentary provide an excellent illustration of this. 

7.2.6 Tragedy of the commons—standard of behavior 

We see that what is missing from the various examples of the tragedy of the commons is an explicit 
inclusion of the operative code of conduct. In contrast, in our decision process theory, we explicitly 
identify the code of conduct with persistent inactive strategies and so the code of conduct is an attribute of 
the solution. Our notion of the code of conduct is very close to the standard of behavior (Von Neumann 
& Morgenstern, 1944, p. 265). In their theory of games, they suggest that players might form coalitions 
that are outside the game and make payments or imputations to each other. They suggested however, a 
specific principle of stability for this standard of behavior that has not received general acceptance. Our 
notion of persistence is general and we think may prove more useful. It incorporates many of their 
notions, which align with our discussion here on code of conduct. 



The Dynamics of Decision Processes 

 

189 
 

7.2.7 Self-interest versus public-interest 

Using the word self-interest, we make an assumption about what we mean by an individual or agent 
in the decision process. The example of the blame game suggests that agents may not always accept 
responsibility for their actions. But, even taking this stance of not being responsible is itself a choice they 
make and are accountable for. We suggest that the decision making process always requires an 
accountable agent, who benefits or suffers from the consequence of his decision. In time of war that 
consequence could be fatal. The insight of the Art of War (Tzu, 1988) is that all decisions are of this 
nature. Decisions are made on the killing field, not only in time of war. In other words, decisions really 
matter. Since to be accountable is itself a strategy, the most elementary code of conduct is taking 
ownership of one’s actions. This ownership we call self-interest. It defines a specific type of person, 
agent or entity (such as a corporation) who makes decisions. In the market place, we clearly distinguish 
owners as those who buy or those who sell. Those who do neither are observers. Therefore we identify 
active agents as those that make decisions. They control a subset of active or inactive strategies and act in 
their self-interest in the sense they are accountable. 

This does not mean that they necessarily seek to maximize their self-interest for any given decision. 
They may make strategic choices that include whether or not to adopt or adhere to additional codes of 
conduct. Real world examples of additional codes of conduct abound; some corporations issue along with 
their mission statement a code of conduct to their employees about how they do business. For example 
they may explicitly state they don’t engage in bribery, though in some overseas locations such practices 
might be common.  

In a more general sense, a code of conduct is a statement of control that encompasses self and public-
interest. A code of conduct presumes that each active agent, by convention, controls certain choices. The 
most fundamental aspect of control is control of self. In our decision process theory, we attribute self to a 
persistent attribute (chapter 3) or inactive strategy that might be viewed as a circular symmetry, thus 
exhibiting the inactive nature of the strategy. All points are equal; effects depend only on the (conserved) 
speed and direction around the circle. The persistency defines what we mean by self, agent, individual or 
player. Thus self is the fundamental control, the fundamental code of conduct. We diverge from game 
theory by realizing that dynamic behavior does not require nor does experience suggest that self is the 
only control operating when making decisions. We make decisions on the basis of our public-interest as 
well as our self-interest. 

We identify groups, organizations, societies and nations as having a code of conduct when every 
member of that collection treats a set of strategies as being inactive. These strategies form and define an 
extended code of conduct. This type of persistency we identify as inter-dependence and note that it 
clearly serves the public-interest. A special case of inter-dependence is altruism. It is our view that any 
individual is free to act based on any combination without bias of public or self-interests. In other words, 
we argue that the wealth of nations is the result of an enlightened self-interest, in which all participants 
agree to a common set of policies. Further, we argue that any set of policies can be chosen, not all of 
which yield an outcome that would be considered individually positive. If all players adhere to a code of 
conduct, then that code of conduct is an attribute of the solution in our decision process theory. It operates 
like symmetry in physics. The codes of conduct, as stated above reflect the inactive strategies that exist in 
addition to the self-interest strategies. Such symmetries are as stable as individual symmetries. 

As in other engineering problems, solutions can’t be simply ordered from best to worst. Choice must 
be made based on many criteria that include cost, benefit and risk. Good governance depends on the 
substance of the policies and their acceptance of the participants over time. What engineering can provide 
is a description of the dynamic behavior of the structures and an analysis of whether the structures will 
stand up over time.  

7.2.8 Strategic control 

In general we think of a player or agent as one who controls some subset of the strategies. Because of 
the code of conduct, we could identify each persistent inactive strategy with an agent. However these 
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agents control no active strategy. In this sense these agents act like the dummy players of (Von Neumann 
& Morgenstern, 1944, p. 340). We call such players observers. They observe in the sense of an umpire or 
referee. They are responsible for a subset of the inactive strategies and so care about the outcomes 
(section 7.6). It may in fact not be inappropriate to think of real people acting as agent for the collection 
of strategies we call the code of conduct. We think of governments, courts, standards bodies, boards of 
directors, etc. that create policy but not action. Thus, the player with no active strategy assigns values to 
outcomes but makes no choices. This person is clearly dependent. It is perhaps amazing that the theory 
provides a mechanism for such a dependent to have influence. 

7.2.9 Standing in line game 

As a simple example of the interplay between active and inactive strategies and their relation to a 
code of conduct, we consider the simple act of standing in line. In some countries such as the United 
States and England, standing in line is based on an unofficial code of conduct. Three days a week I stand 
in line waiting for a train. Typically I am the first person there and so get a chance to observe what 
happens. I stand as close as possible to what would be considered the beginning of the line, which is near 
the exit door to the train. On my left is a wall and to my right is an open hall. The first person to come 
after me has a choice to stand by my side staking out an equal claim to be first (an active strategy), 
standing to my right but behind me or standing directly behind me (admitting that being in the queue is an 
inactive strategy). Very rarely if ever will someone stand beside me. The inclination to form a queue is 
very strong. In fact most of the time people will line up behind me, demonstrating this inclination. 
Sometimes however, a person in fact lines up behind but to the side. There is a competitive issue here. If I 
hold my place, the next person may well line up behind number two, starting a second line. I have seen 
this happen with two lines forming. Clearly the hope of the number two person is that this second queue 
will become the only queue and provide impetus for that person being first. A counter to this behavior is 
for me to move away from the wall midway between him and the wall. In this case, I observe that the next 
person tends to see a single queue and lines up appropriately, either behind me or along the wall. Once a 
sufficient number of people are in line, the whole line including the number two person ultimately 
gravitates back towards the wall. In this example we see both competitive forces at work as well as 
cooperative forces. We see the forces that hold the inactive symmetry in place. 

The enforcement of the queue is part of cooperative forces (section 7.6). Anyone that attempts to 
jump the line will be glared at by those in the queue. This glaring becomes more effective the longer the 
line. When glaring doesn’t have the desired effect, I have observed that people will loudly mumble about 
the lack of consideration of the person jumping the queue. The next level of enforcement is some people 
will pointedly tell the line jumper that there is in fact a line and indicate where the end of the line is. 
These stratagems seem to work almost always. I have never seen the situation escalate to violence, though 
I suggest that is possible. At this point, the inactive nature of the code of conduct is destroyed and the 
solution reflects queuing as an active strategic process. 

7.2.10 Zero sum strategy games 

Our particular solution (chapter 5) to the prisoner’s dilemma can be understood now in this new light. 

For any general two person game, we identify the sum of active strategies of the first prisoner as  and 

the second prisoner as . We further identify the difference of active strategies of the first player as  

and the second prisoner as . The code of conduct is that each prisoner agrees to treat his strategy 

difference  as inactive. Although each prisoner controls his own difference, like the queuing example, 

there are various levels of enforcement, starting with glaring, that hold these strategies inactive. 
Furthermore, we identify an additional code of conduct by taking the sum of the two active summed 

strategies  to be inactive. This strategy is controlled jointly by the two prisoners. Depending on the 

specifics, we may also envision all three inactive strategies as being controlled jointly. The sole active 

strategy  that remains reflects the relative player effort of the two prisoners. This introduces an 
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effective agent reflecting joint control, which is accountable for the relative engagement choice. We think 
a general consequence is that there will typically be some subset of active strategies that are no longer 
under individual control.  

We thus obtain a solution that has a code of conduct as a consequence of our choice of inactive 
strategies. We allow each prisoner to make their own choice as long as they adhere to the code of 
conduct. We obtain as a consequence of them acting in accordance of a code of conduct, the possibility 
that the solution behaviors can in fact encourage public as well as self-interest. 

7.2.11 Accountability and number of agents 

It is worth noting that when there is a code of conduct, the resultant game involves effectively more 
players. The specific prisoner’s dilemma solution (chapter 5) involves at least three players; in this 
numerical example there are five players. Identifying the players in terms of the inactive strategies 
provides a refinement of what we mean by putting a game into normal form. We need to identify all of 
the players and further identify the strategies for which they are accountable. Players that are accountable 
for active strategies are the active agents; those that are accountable only for inactive strategies are the 
observer-agents. Even though observers are not accountable for active strategic choices, they are 
accountable for the code of conduct (inactive strategies) and influence actions by other mechanisms such 
as glaring etc., which we discussed with regard to queues. 

The idea of code of conduct, make the metaphor of decisions and recreational games stronger. The 
objection might be that in real life, particularly life and death situations, there are no rules. For example in 
war, one might argue that the only rule is to win at whatever cost. The counter would be the Nuremburg 
trials and Geneva Convention. There are rules about prisoners of war, about treating the wounded by the 
enemy, etc. 

In summary, we see that not only in our decision process theory, but in the theory of games, there is a 
presumed code of conduct that all players adhere to. Without invoking the code of conduct, we may be 
led into paradoxes such as the prisoner’s dilemma and the tragedy of the commons. In our decision 

process theory, we introduce in a natural way the concept of the code of conduct as the manifestation of 
persistency of inactive strategies (chapter 3). We view self-interest as the persistence associated with an 
active agent who controls a subset of the strategies. We view public-interest as the persistence associated 
with solutions in which active strategies are collectively chosen as inactive.  

7.3 Dealing with uncertainty 

The foundational aspects of game theory are associated (Aumann, 1989) with the period 1910-1930. 
Games as used today are described in two forms: extensive and normal. The extensive form provides the 
common sense description of recreational games and realistic decision processes. For example, we 
understand chess as a recreational game, which is played by two people who take turns making their 
moves according to agreed rules. The game ends after few moves or many depending on the relative skill 
of the players. At the end of the game each player receives (or pays) a payoff. One contribution of (Von 
Neumann & Morgenstern, 1944) is their framing of general transactions in the economic world as being 
mathematically the same as an extensive recreational game. A necessary assumption is that in the 
economic world, there is a utility function that allows us to assign a payoff to the outcome, just as in 
recreational games. In our foundational game theory, section 1.1, we implicitly adopt this view for 
decision processes. It is not an explicit adoption because it is difficult though not impossible to frame the 
theory in the extensive form in such a way that it covers all conceivable games.  

It is more convenient to frame the strategic content of the theory in the intensive form (Von Neumann 
& Morgenstern, 1944), also called the strategic form (Aumann, 1989). Using chess again as an example, 
to most effectively compete, each player could lay out every conceivable scenario on a decision tree, each 
pure strategy, based on possible moves the two players might make over the duration of the game. For 
chess the combinatorial possibilities are staggering but finite. Each player would then characterize their 
strategic choices quite simply: they each choose one of their pure strategies. The game in this intensive 
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form consists of a play, which is a single choice by each player and the payoff is based on the utility or 
outcome assigned to each player. Obviously, each play may consist of a large number of moves. The 
advantage of this view is that we can treat every game in the same way, distinguishing games only by the 
number of players and the number of pure strategies associated to each player. The intensive form 
captures all of the essential strategic details of the game or decision process. Two games with the same 
intensive form should behave equivalently. In our foundational game theory, section 1.1, we have adopted 
explicitly the view that decision processes can always be described in this way. So far we align with the 
work from this early period 1910-1930. 

In this same early time period, insight was obtained on different types of uncertainty, an insight 
facilitated by a focus on the intensive form of games.  Uncertainty enters game theory in a variety of 
ways. Already for recreational games, such as card games, there is a well-known element of chance 
separate from any uncertainty the players may have in making their pure strategy choice. This type of 
uncertainty can be absorbed into the definition of the pure strategies. We consider as part of the moves, 
each possible random choice and redefine the pure strategies accordingly. Thus from a theoretical view, 
there are no new issues on how to treat such games. 

A second uncertainty requires a fundamental change to a theory that deals only with pure strategies. It 
was observed (Von Neumann & Morgenstern, 1944) that the outcome of certain games (e.g. exercise 2) is 
determined by an optimal choice of pure strategies whereas the outcome for others (e.g. exercises 3-8) is 
not. When the outcome is determined, every player can analyze each of his pure strategies based on 
whatever the other players might do and identify the worst outcomes, which corresponds to the minimum 
payoffs for each of his pure strategies. The pure strategy that has the largest payoff then would be the best 
choice from this defensive stance, called the max-min solution. In the chess game example, the max-min 
solution for each player has a payoff. If the two payoffs are the same, the game is strictly determined. 
This is the max-min theorem and holds for all strictly determined games. For strictly determined games, 
the outcome or payoff is the same for every player and each player plays one of their pure strategies. 
Furthermore, there is no other pure strategy that will give a better outcome irrespective of what the other 
players might do. In general, games are not strictly determined, so these games need to be dealt with. 

For games that are not strictly determined however, the max-min solution though defensive, may not 
be optimal. Though the intensive form exposes only the strategic properties of the game, it fails to take 
into account another important aspect of all games and decisions. We know most about games if we play 
them repetitively. As in scientific inquiry, we have a hard time creating a theory for phenomena that occur 
once. For strictly determined games, it makes little difference if a game is played once or multiple times. 
The max-min solution is still the optimal solution.  

For any repetitive game that is not strictly determined, any player that consistently plays a single 
strategy can have their strategy discovered by the other players. Other players may cease acting 
defensively in hopes of improving their outcomes. Once a player discovers that their defensive strategy 
choice starts leading to lower payoffs, they will be encouraged to change to some other pure strategy. 
This in turn will lead the other players to modify their choices. We discuss in more detail below whether a 
player makes a choice of pure strategies based on a prediction of what other players might do, or makes 
their choice based on past history of what is no longer a good idea. Either way, each player sees an 
advantage to diversify their portfolio of choices and choose plays according to some frequency 
distribution of pure strategies, called a mixed strategy. For players that pick mixed strategies, it can be 
proved that there is a max-min theorem for two person games (Von Neumann & Morgenstern, 1944). The 
max-min theorem is replaced for multiple players with an equally effective and equivalent theorem (Nash, 
1951). Nash equilibrium is a mixed strategy choice for each player that is optimal in the sense that there is 
no other choice available to any player that would be superior. To the extent that every game has Nash 
equilibrium, the stationary behavior of games is established. The underlying meaning of mixed strategies 
however is still open. We address that next. 

We share with (Von Neumann & Morgenstern, 1944, p. 19) the view of mixed strategies as a 
frequency distribution: 
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“Probability has often been visualized as a subjective concept more or less in the nature of estimation. Since we 
propose to use it in constructing an individual, numerical estimation of utility, the above view of probability would not serve 
our purpose. The simplest procedure is therefore to insist upon the alternative, perfectly well founded interpretation of 
probability as frequency in long runs. This gives directly the necessary foothold.” 

We thus think of decisions being made based on knowledge of past events, including past frequency 
distributions, as opposed to an estimate of future behavior. It is our view that these frequency 
distributions change in time according to deterministic equations based on past behavior. We don’t hold 
that such frequency distributions predict the future using the mathematics of probability theory. In other 
words, our deterministic equations are not equivalent to Bayesian probability theory (Bayes, 1764) in its 
various forms. 

We make this point because the direction of game theory subsequent to (Von Neumann & 
Morgenstern, 1944) has been based on probability arguments as the mechanism for future predictions. It 
is of course tempting to predict the future using a minimum of assumptions about what is known. This is 
especially true when we know little about the underlying processes. It provides a strong reason for using 
probability arguments. Decisions are about things we care about. If we can predict the future then our 
payoffs will be better and potentially better. The question is whether we use probability or an 
understanding of decision processes to make that prediction. Either way we may use statistical arguments.  

The estimation process makes a prediction based directly on the statistical evidence. We have referred 
to this as the Farmer’s Almanac approach. In this case, we require little knowledge of the details of past 
weather phenomena. In contrast, fluid mechanics models make predictions based on the assumption of 
continuity of the physical process and the observation that these processes obey laws. We need however 
vast quantities of data about the past in order to utilize such models. In this case, statistical evidence is 
used along with the null hypothesis (Fisher, 1925) to look for evidence against such laws. In other words 
it is not enough to postulate a theory; we have to demonstrate that the theory does not fail. When we 
identify failures we must modify the theory to correct the fault. The difference of these two approaches 
was discussed during the formative stages of the development of statistics (Fisher, 1925). We say more 
about that here. 

Much of current game theory relies on Bayesian (Bayes, 1764) or inverse probability as the means to 
predict the future. The view is that if we observe the occurrence of an event repeating itself in the same 
way many times, it will be more likely to do so in the future. If the occurrence is a set of strategic 
behaviors for a game, we may even adopt that behavior as the equilibrium behavior. However, we adopt 
the opposite view (Fisher, 1925, p. 9):  

“… For many years, extending over a century and a half, attempts were made to extend the domain of the idea of 
probability to the deduction of inferences respecting populations from assumptions (or observations) respecting samples. 
Such inferences are usually distinguished under the heading of Inverse Probability and have at times gained wide 
acceptance. This is not the place to enter into the subtleties of a prolonged controversy; it will be sufficient in this general 
outline of the scope of Statistical Science to reaffirm my personal conviction, which I have sustained elsewhere, that the 
theory of inverse probability is founded upon an error and must be wholly rejected. Inferences respecting populations, from 
which known samples have been drawn, cannot by this method be expressed in terms of probability, save in those cases in 
which there is an observational basis for making exact probability statements in advance about the population in question.”  

In the context of making decisions, we thus argue against a Bayesian approach. We hold to the notion of 
frequency (as opposed to lotteries or probabilities) for mixed strategies and the use of statistics as a 
necessary ingredient of the scientific method, but not a predictor for future behavior.  

In our decision process theory, whether a person believes they are predicting the future or acting on 
information from the past will be treated in the same way. We assume that however one arrives at a 
frequency distribution for mixed strategies, knowledge of that distribution as a function of position and 
past times provides a scientific basis for future predictions using a calculus based theoretical framework, 
the decision process theory. Our difference from the early game theory work is not foundational, yet our 
differences are foundational with later work. We differ because we believe the focus for a dynamic 
description is on the repetition of the game, which gives the observational data for the frequency 
distributions of mixed strategies.  

This uncertainty about mixed strategies is closely tied to the conversation about stable solutions. We 
have characterized this uncertainty as two schools of thought: one that frames probability theory based on 
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set theory, combinatorial methods and Bayesian probability to predict the future; the second, 
counterpoised to this, frames decision processes based on underlying processes and utilizes differential 
equations and mathematical tools from the physical sciences. There is evidence to support belief in the 
former approach (Von Neumann & Morgenstern, 1944, p. 6): 

“The importance of the social phenomena, the wealth and multiplicity of their manifestations and the complexity of 
their structure, are at least equal to those of physics. It is therefore to be expected—or feared—that mathematical discoveries 
of a stature comparable to that of calculus will be needed in order to produce decisive success in this field. (Incidentally, it is 
in this spirit that our present efforts must be discounted.) A fortiori it is unlikely that a mere repetition of the tricks which 
served us so well in physics will do for the social phenomena too. The probability is very slim indeed, since it will be shown 
that we encounter in our discussions some mathematical problems which are quite different from those which occur in 
physical science.  

“These observations should be remembered in connection with the current overemphasis on the use of calculus, 
differential equations, etc., as the main tools of mathematical economics.” 

In support of their view, we see value in the axiomatic tools that have been applied that have provided 
much needed analysis and clarity of distinctions about what constitutes decisions in general and economic 
decisions in particular.  

In contrast, we are not in agreement that “tools of the physical sciences are inappropriate”. We 
believe a number of advances have been made since that statement was written, as well as a few setbacks. 
The particular complexity, namely the existence of a stable standard of behavior, suggested by (Von 
Neumann & Morgenstern, 1944) does not always exist (Aumann, 1989, p. 13): 

“Von Neumann and Morgenstern were thus led to the following definition: A set  of imputations is called stable if it 

is the set of all imputations not dominated by any element : 
“This definition guarantees neither existence nor uniqueness. On the face of it, a game may have many stable sets, or it 

may have none. Most games do, in fact, have many stable sets, but the problem of existence was open for many years. It was 
solved by Lucas (1969), who constructed a ten-person TU coalitional game without any stable set. Later, Lucas and Rabie 
(1982) constructed a fourteen-person coalitional game without any stable set and with an empty core to boot.”  

Moreover, there is new understanding that shows that the differential equations of physics allow for vastly 
more complexity (Thom, 1975) than was previously believed, complexity of the type that might in fact 
come out of the set theory and combinatorics view. See for example (Chandrasekhar, 1961), which has 
particular relevance given the similarity of our decision process theory to the theory of relativistic 
charged fluids.  

In the connection to relativistic charged fluids, we note similarity to solutions there and complexity 
demonstrated numerically in our solutions to the prisoner’s dilemma such as Figure 5-37. One of the 
striking predictions of game theory that rested entirely on the algebraic and abstract formulation was the 
standard of behavior. In section 7.2, we provided a view of codes of conduct, which we feel is an 
improved definition of that concept. This improved definition satisfies both the set theoretic basis in 
symmetry and the process basis consistent with a calculus based approach. 

The concept of standards of behavior or codes of conduct, along with the ability to frame any decision 
process in intensive form provides the starting point in our decision process theory. We require primarily 
knowledge of the earliest period of game theory, 1910-1930. Fortunately, many of the elementary text 
books on game theory address the question of how to frame games in the intensive form. We benefitted 
greatly from one such, (Williams, 1966) and suggest the student work through their examples. We 
provide exercises at the end of the chapter, some of which are from this reference.  

In this section we have raised the notion of uncertainty and discussed our view of probability and 
statistics. This viewpoint changes how we view utility, which we turn to in the next section. 

7.4 Utility Theory 

Utility is the value or worth we give to things we buy or sell. We assign utility to actions we take 
towards others and actions others take towards us. In commerce we believe mechanisms are in place to 
value goods and services making it possible for a market to exist. More generally, all decisions require a 
notion of value associated with the outcomes of that decision. To discuss value or utility, there is no loss 
in generality to discuss the decision process in normal form. In normal form, each agent makes a single 
pure or mixed strategy choice. The resultant outcome is that each agent will give or receive something of 
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value dependent upon the collective choices made (and dependent on when that choice was made). From 
a theoretical standpoint therefore, it is critical that this concept of value or utility be made precise. The 
basis of a quantitative theory of decision processes rests on having a quantitative theory for utility. This 
has been done through an axiomatic approach, which provides the necessary mathematical infrastructure 
for a precise and usable definition.  

7.4.1 Preferences 

In the axiomatic approach of game theory, utility is discussed in the context of how decisions deal 
with certainty, risk and uncertainty (Luce & Raiffa, 1957). A simple decision expresses a preference or 
choice between alternatives. If we choose between two distinct alternatives A and B, then we obtain our 
choice with certainty. If we choose between an outcome A and some mixture of B and C, then we obtain 
an outcome with risk. If we pick the mixture we know only the frequency with which we might get B or 
C but we don’t know which. If there are other players or factors that affect our decision, then we obtain an 
outcome with uncertainty. This verbiage suggests that our preference is a prediction of what we will 
obtain in the future based on our choice. It includes an ordering based on what will probably happen. 
These authors (Luce & Raiffa, 1957) go on to discuss utility in terms of lotteries and prizes, a context that 
is suited to the modern game theory approach (Gardenfors & Sahlin, 1988) in which equilibrium behavior 
follows from the rational behavior of the participants. This context favors the idea that probabilities are 
like lotteries and are estimates for future behavior and potential gain or prizes. The context makes 
possible discussing future behaviors in terms of certainty, risk and uncertainty. 

In this section we wish to recontextualize utility so that it conforms to our general decision process 

theory. In our view, we don’t envision predicting the future (section 7.3) based on probability. We frame 
our view in an historical context. Though an early treatment of utility goes as far back as (Bernoulli, 
1738), the treatment that best meets our needs starts with (Von Neumann & Morgenstern, 1944), which is 
based on frequency of occurrence rather than probability.  

Their idea is that it is self-evident (in the sense of creating axioms) that between two alternatives, A 
and B, from past behaviors a decision maker can choose the one that has more utility. This knowledge is 
not enough however to provide a basis for utility in game theory. A decision maker needs to know more. 
Between the alternative A and the alternative of some combination of B and C, again by past behaviors a 
decision maker can choose the alternative that has more utility. When the concept of mixture is made 
precise, a numerical utility function can be defined that expresses a utility for any mixture of choices. 
They adopt the most conservative approach, which is that the mixture is based on the frequency of 
occurrences of choices B and C in the past. This approach is consistent with the usual application of the 
scientific method (Fisher, 1925), as it does not invoke Bayesian or inverse probability (section 7.3).  

The issue of how we predict the future becomes more complex when we deal with more complex 
decisions than picking preferences. Now we have issues of uncertainty in our outcomes based on 
decisions made by others or factors outside of our control. We hold to the view that despite these 
complexities, a process view is possible in which the future flows from past behaviors of all the agents 
involved in the decision process. We may be able to calculate that flow but only if we make assumptions 
about those underlying processes. Hence, we make no use of probability as estimation.  

We do make use of probability or statistics in the usual way it is employed with the scientific method 
to discredit assumptions that appear extremely unlikely. Thus in our dynamic theory we base our 
assumptions of what is known about decisions in the present and past and use the decision process theory 
to determine future behaviors. We use the scientific method to modify our theory based on observations 
and measurements. 

We also use probability and statistics to measure. For example when we measure the distance 
between two points, we do the measurement several times and average the values obtained. There are 
differences each time based on the uncertainties of the measurement process that are unrelated to the 
concept of length. In decision processes, there are uncertainties in measuring the utilities that are 
unrelated to the presumed concept of utility between A and a given combination of B and C. 
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Thus our decision process theory allows us to use past data on frequencies to make choices. Based on 
this approach, we expect the axiomatic proof of utility (Von Neumann & Morgenstern, 1944) to follow 
unchanged. As a consequence, we should be able to compare frequency distributions of each decision 
maker and allocate a numerical utility, the payoff, to each of them. In order to assure that we can carry out 
this program, we envision that sufficient repetitions of the decision process can be observed in order to 
arrive at reasonably accurate measures. We thus specify what we mean by a point in time: it is an interval 
that is large enough to carry out the above program, though not so long as to open the discussion of what 
behaviors might be stationary (Cf. section 2.7).  

We believe there are numerous examples of this process used today in the commercial world, 
examples that assign time-dependent numerical utilities and payoffs to processes that are inherently 
human and subjective. Consider as an example the production of code by software developers. The 
production of code results from a collection of decisions. If the decisions were correct, the code works; 
otherwise the code has parts that don’t work and has defects that will be identified in the discovery or 
testing stage. The percentage of code that works versus code that doesn’t work represents a frequency 
distribution that is knowable in principle at the time the code is produced but in practice is not known 
until later. One can nevertheless model the production of code as a quantity of code with a certain defect 
fraction. The defect fraction is not an equilibrium statement. It depends on the skill and experience of the 
software developers. Over time and based on feedback during the discovery stage, the number of defects 
will go down. This is an example of a strategic fraction changing in time as well as a utility that increases 
over time as the production quality increases. To improve profit and customer satisfaction, the software 
development company provides feedback loops to decrease defects, increase skill levels and thus lower 
cost and improve quality. A static view using frequencies as estimates of future behavior would miss this 
insight. 

We assert that it makes sense to consider the cardinal as well as ordinal properties of utility based on 
comparing choices that involve combinations with frequencies (Von Neumann & Morgenstern, 1944, p. 
617). For choices that involve certainty, only ordinal utility is needed. The consideration of mixed 
strategies however brings us back to a cardinal view (up to linear transformations).  There appears 
however, a belief that remains that the cardinal view is too restrictive and only the ordinal view is needed. 
It is framed as the view that only the set theoretic view is needed because the calculus view lacks the 
capability to produce complex effects (Luce & Raiffa, 1957, p. 18): 

“The problem is to find an act satisfying … [the linear programming problem]. It is clearly a decision-making problem 
under certainty; however it cannot be handled by the traditional methods of the calculus. What is known as the theory of 
convex bodies has proved crucial.”  

We have demonstrated in our decision process theory that dynamic stable points of games will also 
satisfy the equilibrium condition and hence the theorems of convex bodies.  

We now know that complex algebraic results are not excluded as attributes of solutions to differential 
equations. Our adoption of a differential geometry approach allows the possibility of local behaviors in 
which each individual player can adopt their own view of the payoffs and utilities without making it 
impossible to compare those utilities and without assuming their utility measures are the same.  

We thus see no reason to exclude calculus as incompatible with many of the algebraic results that 
have been obtained, including those on utility. We see no reason to expect that calculus is any less rich in 
allowing complex structure than algebra. The modern view of calculus is that it is a rich combination of 
topology, group theory and algebraic structure. This rich structure and its possibilities are amply 
supported in the literature. For example it is viewed as a gauge theory by (Hawking & Ellis, 1973, p. 50) 
and viewed in the mathematical world as a fibre bundle topological structure with a connection (Eilenberg 
& Steenrod, 1952). For introductory lectures on the subject of both these physical and mathematical 
views, see (Thomas G. H., 1980). 

7.4.2 Local utility 

We restate two caveats on utility that relate to our decision process theory introduction in chapter 1, 
which echo and generalize a similar discussion in (Luce & Raiffa, 1957, p. 33). First, the utility function 
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is determined up to a linear transformation and is specific to each decision maker. Second, we make the 
further restriction that this utility function is local (the gauge theory property), so it is determined at each 
point in time and space. We see utilities as reflecting the underlying measure of distance between 
strategic points in space and time. This underlying distance measurement or metric may vary and evolve 
over time according to dynamic rules, rules that we have specified in our decision process theory. In our 
theoretical framework, the metric determines the payoff tensor, cf. section 1.9, Eq. (1.73). We can relate 
the payoff tensor to the utility of (Von Neumann & Morgenstern, 1944) using the following argument that 
helps articulate their general framework. 

To set the stage, we assume as an example that there is some utility measure in business transactions. 
Suppose we have invested in three companies. Our experience is that our investment in company A 
yielded $25K, company B yielded $30K and company C yielded $10K. Based on this experience we 
prefer A to C and B to A. Because we are using a numerical measure, we see that we also prefer A to a 
50% investment in B plus a 50% investment in C. This is because a ½ interest in each of B and C would 
have yielded $20K, less than the return from A. 

The insight (Von Neumann & Morgenstern, 1944) is that this argument can be turned around. First if 

we prefer A to B and assign a numerical utility  to A and  to B, then because of our 

preference, the numerical utility of A should be larger than the numerical utility of B: . The 

standard economic argument concludes only that it is reasonable, therefore, for there to be a utility 
function  but it is unique only up to transformations that preserve order. The second and crucial step is 

the assumption that if we prefer A to a fractional investment  in B and  in C, then the numerical 

utility of A should be larger than the weighted sum of B and C using the fraction f: 

  (7.1) 

Before drawing their conclusion, we note that the word investment was used here because of our starting 
example. We don’t however require a concept of money, but a concept that we are willing to split our 
effort between B and C by some fraction. In the context of our decision process theory, the simplest way 
to envision splitting our effort is by our actions. We thus envision that we prefer putting our effort in A to 
splitting our effort between B and C based on the fraction .  

If this is the case, then the numerical utilities will be related in the above way, Eq.  (7.1). These ideas 
are made mathematically precise by (Von Neumann & Morgenstern, 1944), who show that under 
reasonable mathematical assumptions, the utility function is determined up to a linear transformation. In 
other words if there is any other utility function  that also satisfies Eq. (7.1), then there will be 

numerical constants  that relate the two utility functions for any choice A: 

  (7.2) 

They thus arrive at the converse of our starting investment example. 

7.4.3 Payoffs 

We make connection to our payoff fields as follows. We apply this utility function to decisions in 
their normal form. Each agent makes a decision by choosing a single pure strategy.  We make the 
assumption that each agent can not only assign a preference to her pure choice versus any set of pure 
choices of the other players, but can assign a choice based on fractional combinations of choices as 
defined above. Making the same assumption as before, it is clear that each agent has a utility function 
with which to compare any fractional choice of her strategies against any possible fractional choices made 
by each of the other players. This utility function is determined up to a linear transformation. It is clearly 
determined at some specific time and relative to some specific context of choices that have been made. In 
other words it is determined locally. 

This utility function provides for each agent, the elements of what we have called the payoff tensor. 
The values will be for each pure strategy of that agent against each pure strategy of each other agent. It is 
also clear that we obtain a new feature, an internal preference or internal payoff for pairs of strategies of 
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the same agent. We see that the payoff tensor captures and extends the essence of the utility argument. In 
our decision process theory we in fact don’t claim nor require it to be unique. In the theory there is the 
concept that at each moment in time as well as at each strategic point, the theory is non-unique up to a set 
of general linear transformations. We extend the concept of such transformations to make them local. We 
also insist that the theory be causal in the sense of physical theories, that we don’t predict the future but 
base our calculations on past behaviors that obey laws dictated by a principle of least action. We return to 
this discussion in section 7.7. 

Game theory provides significant insight into payoffs and how agents use them to deal with 
competition. We take this up in the next section.  

7.5 Dynamic law of competition 

Game theory provides valuable information on the known behaviors, cf. section 7.9, based on a well 
developed literature on stationary solutions characterized by strategic flows and payoffs. For example in 
the prisoner’s dilemma, chapter 5, we take flows and payoffs to hold along some hypothetical set of 

strategic values . We must augment our knowledge from game theory to provide a complete 

specification of the known behaviors. We find that there are additional strains, section 5.5, as well as 
additional stresses, section 5.6, which must be specified. We use this augmented set of known behaviors, 
along with the partial differential equations to determine behaviors at other points of time and space.  

The stationary behaviors provide our starting point. A large component of the known behaviors is 
based on competitive behaviors. For example, the easiest stationary behaviors to determine are for two-
person non-cooperative games, i.e. competitive games. The easiest of these, by far, to deal with are those 
in which each player has exactly two pure strategies. We use this as an informative and illustrative 
starting point and then extend our discussion to non-cooperative  two-person games where the two 

players have  and  strategies respectively. We point out that numerical solutions can always be 

found for such games using linear programming (Luce & Raiffa, 1957). We conclude by postulating an 
economic equivalence principle between the linear programming solutions and our decision process 

theory. As a result we argue that our decision process theory provides a law that is the natural extension 
of stationary competitive games to general dynamic decision processes. The ideas of dynamic 

competition, code of conduct (section 7.2), and dynamic cooperation (section 7.6) provide the dual 
notions of non-cooperative and cooperative games in our theory. We see the decision process as the 
interplay of these mechanisms. 

7.5.1 Game theory limit 

The competitive aspect is seen clearly in the two-person zero-sum  non-cooperative game, which 
is characterized by the payoff matrix for player 1; the payoff for player 2 is the negative of this, since we 

consider a zero-sum game. The  sub-matrix  for player 1 contains all the information about this 

game.  

  (7.3) 

The two players choose pure or mixed strategies in an attempt to achieve the best outcome and prevent 
the worst consequences. Two situations can arise: first, there may be one strategy that dominates, i.e. one 
strategy is clearly better than the other. Suppose the numerical values of the payoffs are such that 

.  There is no advantage for player 1 to ever choose the second strategy (row 2), 

since no matter what player 2 does the first row dominates each element of row 2. If it also happens that 
one column dominates for player 2, then the game is said to be strictly determined. The stationary 

solution is for each player to pick their dominant strategy. We see that the definition of stationary 
behavior is the equality: 

  (7.4) 
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The most defensive strategy for each player is for them to consider the worst that can happen and then 
pick the best of these worst cases. It is not always possible however to find such a stationary solution 
since not all games are strictly determined. 

For games that are not strictly determined, it is still possible to find a defensive strategy for two-
person zero-sum non-cooperative games using mixed strategies (Von Neumann & Morgenstern, 1944): 

  (7.5) 

Player 1 chooses a normalized mixed strategy  and player 2 chooses a normalized mixed 

strategy . In the space of all such normalized mixed strategies, player 1 considers the worst 

that can happen for each mixed strategy choice that player 2 makes, and then considers the maximum of 
all of these. Player 2 makes the corresponding defensive choice. The mathematical theorem is that there 
will always be at least one solution to this problem. The stationary behaviors for this class of games will 
be these defensive solutions. The stationary behaviors provide a rule or association of strategic choices to 
the given payoff matrix elements. 

For strictly determined games, we can often determine the dominant strategies by inspection. It is in 
general more complicated to determine the mixed strategy stationary behaviors for games that are not 
strictly determined. There is one case however that is particularly easy: again it is the  game. We 
consider such a game in which neither player has a dominant strategy. We compute the following 
differences for each row and column as follows: 

  (7.6) 

Since neither player has a dominant strategy, either the row and column elements labeled odds will all be 
positive or all negative. If they are all negative, we multiply the elements by minus one. It can be 
demonstrated that the stationary behavior Eq. (7.5) occurs when player 1 picks a mixed strategy based on 
the odds1 column and player 2 picks the mixed strategy based on the odds2 row. To get the normalized 
mixed strategy, divide the odds by their sum, given in the odds2-odds1 entry. 

7.5.2 Linear programming 

The ease with which one can compute the mixed strategies for  games makes them attractive as 
examples (Cf. the exercises at the end of this chapter), but not representative of the richness present in 
zero-sum non-cooperative games. By increasing the number of pure strategies for each player from the 

 case, the decision process often can be made significantly more realistic. It also becomes much 
tougher to find the stationary solutions by hand or by calculator. In addition to the numerical complexity, 
there will be combinatorial complexity since there may be dominant strategies as well as mixed strategies. 
The practical approach to obtaining solutions for such games is linear programming (Luce & Raiffa, 
1957). 

We apply linear programming to competitive games, namely two-person zero-sum non-cooperative 

games. A competitive game is described by a sub-matrix , where the first and second indices span the 

 pure strategies of player 1 and player 2 respectively. We look at the game from the perspective of 

player 1. He expects to receive a payoff  or greater by playing a normalized mixed strategy  

:  

  (7.7) 
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In game theory, the stationary strategies are unchanged by adding a constant payoff to every pair of pure 
strategies, so in that theory there is no loss in generality to assume that the payoff matrix elements are 
positive, which implies that the expected payoff to player 1, the best he can hope for, is also positive. In a 
competitive situation, Player 1 wishes the payoff to be as large as possible. We can divide the inequality 

Eq. (7.7) by this positive unknown, redefining the mixed strategy , which no longer is 

normalized. The resultant problem is that of finding the minimum of  subject to the constraints: 

  (7.8) 

This problem is the linear programming problem whose solution is part of standard packages of software 
such as Mathematica, the one we have used for our calculations. 

In like fashion we analyze the game from player 2’s perspective. She expects to receive a payoff  

or more, which translates to an expectation that player 1 receives the amount  or less, by playing a 

normalized mixed strategy  : 

   (7.9) 

Again, because the game is competitive, Player 2 wishes this value to be as small as possible. We can 

divide the inequality by this positive unknown, redefining the mixed strategy , which no 

longer is normalized. The resultant problem is that of finding the maximum of  subject to the 

constraints: 

   (7.10) 

This problem is the linear programming problem dual to the previous one. The simultaneous solution of 
these two linear programming problems provides the max-min stationary behaviors Eq. (7.5). 

In our decision process theory, we have used the fact (section 1.4) that every game can be put into 
symmetric form (Luce & Raiffa, 1957). We solve the two linear programming problems simultaneously 
using the symmetric game form. For any game we add a constant to each element so that the symmetric 
form elements are all positive. We use linear programming on the modified symmetrized game matrix to 

find the strategies , which for convenience of notation we write as . Given the linear 

programming solution, we revert to the original symmetrized payoff: 

  (7.11) 

The linear programming solution of the game is equivalent to finding the null vector of the symmetric 

payoff . The null vector is what we call the payoff direction, of which there may be one or more. In 

our decision process theory, we expect stationary behavior if it is identical to the payoff direction of each 
player. 

7.5.3 Decision process theory solutions 

Not all games are limited to two players, not all games are non-cooperative and not all games are zero 
sum. The general treatment of such games nevertheless has much in common with the games described so 
far. We ascribe a code of conduct to cover persistent cooperation, cooperation that survives all dynamic 
processes. The code of conduct provides a payoff matrix for each player (including pseudo-players that 
owe their existence to the code). As argued in section 7.4, we remove the constraint that the utilities of 
each player are zero-sum or transferable. Still, under rather general conditions we expect that there will be 
stationary behaviors, Nash equilibrium (Nash, 1951), which are determined by the payoff directions. 
Such behaviors have the attribute that they assume all players behave rationally and assume that with 
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rational behavior, no player can expect to benefit more that what is prescribed to the stationary behavior 
by deviating from that prescription. In many cases we obtain such prescriptions by inspection, which we 
did for the prisoner’s dilemma, chapter 5. 

In the context of our decision process theory, we see that the various prescriptions for computing (or 
proving the existence of) the stationary behaviors can be summarized as stating that for the collection of 
all the players’ payoff matrices, there is a rational and compelling rule that associates a stationary flow. In 
our decision process theory, we specify such a rule, which is a consequence of the field equations, which 
determines the flow given each of the player’s payoffs, Eq. (3.14), a generalization of Ampère’s law, Eq. 
(1.24). In electrical engineering, this is the statement that the incremental sum of the magnetic field 
around a closed path must equal the current enclosed. If we imagine that for each player, the payoff 
matrix is roughly constant in a tube surrounding the stationary path, then Ampère’s law implies that the 
current that generates the payoff field would spiral around the outside of that tube. If the tube is not very 
big, then the average motion of the current and the payoff direction are the same. We propose that our 
generalized Ampère’s law Eq. (3.14) extends and replaces the max-min rule Eq. (7.5). We propose that it 
also provide a correspondence to Nash equilibrium for more general games. 

7.5.4 Law of competition 

We thus propose a general rule that extends the ideas of competition based on stationary behaviors. 
The rule reflects two aspects. First, competitive behaviors are based on a dynamic law of competition for 
obtaining the flow vectors from the payoffs, Eq. (3.14): 

  (7.12) 

Though this provides the law of competition, it nevertheless depends on the cooperation potential, , 

Cf. section 7.6. The interaction is the product of the gradient of the cooperation potential and the payoff 
matrix (Cf. Eq. (3.16)). Second, stationary behaviors must reflect, as their name implies, no acceleration 
of the flow, Eq. (7.15). This closed-loop behavior provides unity between our decision process theory 
view and the game theory view. The economic equivalence principle is that our view and the max-min 
rule are the same for two-person zero-sum non-cooperative games. 

We support our proposal with the observation that the stress in Eq. (7.12) is the product of the flow 

and player interest flow, Eq. (2.43), , which is the conserved current associated with 

player . Each player is characterized by a different interest flow density (Cf. producers and consumers, 

section 7.6) given by the flow component . The player interest flow determines whether the flow 

spirals clockwise or counterclockwise around the (null vector of the) payoff. The orientation of the spiral 
indicates whether the player is a giver or taker in the decision process.  

The simplest case is that interest flow densities are all equal and there is a single null vector common 
to all players. In this case we recover the case above in which the flow of the interest produces a current 
that generates each of the player payoffs. We see other options however. The interest flow densities need 
not be large at the same points. Players could in fact pursue different strategies that are nevertheless 
optimal. In other words, the payoff direction for one player need not be the same as another. So the 
dynamic behaviors might in fact be different tubes corresponding to each player that might propagate in 
isolation, interact or scatter, and then propagate again in isolation as a complicated topological shape. 
This is stationary behavior only if both Eq. (7.12) and (7.15) are satisfied. 

Closely related to the dynamic law of competition is therefore the dynamic law of cooperation, which 
we deal with next. 

7.6 Dynamic law of cooperation 

To initiate our discussion, we follow (Luce & Raiffa, 1957, p. 114), starting with their list of 
assumptions normally made about cooperative decision processes: 

1. “All preplay messages formulated by one player are transmitted without distortion to the other player. 
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2. “All agreements are binding, and they are enforceable by the rules of the game. 
3. “A player’s evaluations of the outcomes of the game are not disturbed by these preplay negotiations.” 

The cooperative decision processes are those in which the players make binding decisions that hold 
throughout the duration of play, what we termed a code of conduct in the previous section. Our starting 
point is (Luce & Raiffa, 1957, p. 118): 

“The cooperative two-person theory of von Neumann and Morgenstern (1947) singles out the negotiation set as the 
‘cooperative solution’ of the game. In words, the players act jointly to discard all jointly dominated payoff pairs and all 
undominated payoffs which fail to give each of them at least the amount he could be sure of without cooperating. They have 

argued that the actual selection of an outcome from the multiplicity of points in the negotiation set  depends on certain 

psychological aspects of the players which are relevant to the bargaining context. They acknowledge that the actual selection 

of a point from  is a most intriguing problem, but they contend that further speculation in this direction is not of a 

mathematical nature—at least, not with the present mathematical abstraction.” 

We anticipate that cooperation requires bargaining (Harsanyi, 1989) and arbitration (Luce & Raiffa, 
1957). 

7.6.1 Game theory limit 

Their specific example helps solidify our understanding of cooperation as described in the theory of 
games. We consider the set of payoffs for the two players: 

  (7.13) 

At the outset, we see that the two payoffs are not zero-sum. In section 7.5 we show how to compute the 
strategies for competitive games. Using those techniques, we compute the most defensive strategy, which 
is each player assumes no cooperation with the other player. We assume that each player plays a 
competitive game assuming his own payoff matrix. The ideal strategies for player 1 are then to play his 
strategies with the odds 2:3.  We would say that player 1 is playing against an imaginary opponent, his 
view of how player 2 would play. This imaginary player 2 would play the odds 2:3. The real player 2 
however plays the odds based on his view of the decision process and plays the odds 3:2. His view of the 
imaginary player 1 is that that player would play the odds 3:2 as well. The real player and imaginary 
player don’t align. If each player only played this defensive strategy, they would each receive a payoff of 

. We call these strategies the max-min or defensive solutions. 

The players might however alternate between the first and second choices in synch with each other, 

so they would receive the payoffs  or . The average payoff  to each player for this behavior 

is much better. To achieve this improved payoff, the players must cooperate with each other. The difficult 
issue is the nature of the cooperation and how to compute the outcome of that cooperation while still 
appropriately taking into account the competitive nature that lurks behind each player’s sense of utility 
(Cf. section 7.5). One solution (Von Neumann & Morgenstern, 1944) is to consider the possibilities for 
the two players viewed in the two-dimensional space of their utilities. Players will cooperate if they can 
achieve more than what they could do based on the max-min solutions. This defines the sub region of the 
utility diagram in which cooperation can occur. Cooperation can be persistent, in which case we invoke 
the code of conduct argument from the previous section. Alternatively, cooperation can be dynamic. 

7.6.2 Decision process theory solutions 

In this case, we find that cooperation does not replace the competitive nature (Cf. section 7.5) of the 
decision process but adds additional constraints. We propose as fundamental, the law of cooperation, Eq. 

(3.21), stating that the cooperation potential  between player  and player  is determined by the 

payoffs of the two players and the inertial stress between them: 

  (7.14) 

For a simple but illustrative model of the stresses, Eq. (2.43), the stress between two distinct players 

, is proportional to the product of the player interest flows. In words, unless the 
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players share a common ground, there is no cooperation. The common ground arises in Eq. (7.14) 
because their interest flows (charges) overlap, their payoffs overlap or both. 

The cooperation potential depends not only on the overlap but on the relative sign of the two player 

interest flows. This is different from game theory considerations. We frame the sign of the player interest 

flows into two distinct economic categories: producers and consumers. A more prosaic description for 
any decision process is givers and takers, respectively. A market choice would be sellers and buyers, 
respectively. Our convention will be to take consumers with the positive sign of interest flow and 
producers with the negative sign. A recreational game is typically between consumers.  In this sense our 
distinction does not arise. Moreover, in a two-person decision process, we expect the payoff matrices for 
a buyer and seller to subtract. Instead of a zero-sum game for example, we might get a zero-payoff game 
as a consequence. There will be no payoff forces, only cooperative and inertial forces. We can see these 
possibilities by looking at the expression for the forces, which we do next.  

There will be different types of cooperation depending on the mix of givers and takers in the decision 

process. The cooperation law leads to the conservation law Eq. (4.54), and with sources , Eq. (2.42): 

  (7.15) 

This provides the closed loop (Cf. section 7.8) result that the time rate of change of the flow (the 

acceleration) depends on inertial (or frame) effects (  term), competitive effects (that depends on the 

payoff) and cooperative effects (that depend on the cooperative potential). We discuss the source 
contributions in section 7.7. 

 

Figure 7-1: Prisoner's dilemma  

 

Figure 7-2: Prisoner's dilemma  

Assuming only cooperative effects, stationary behavior occurs when at a maximum or minimum 
potential of the cooperative potential. Since the product of the interest flows and cooperation potential 
involve the square of each player’s interest flow, it is reasonable to expect the overall acceleration or 
force to be a maximum at equilibrium. In that case, moving away from the point would be a restoring 
(negative) force. This would hold for the autonomous cooperation potential (the self-cooperation effect, 
Figure 7-1) as well as the cooperation between distinct players. We might further expect that the 
cooperation potential for distinct players would be a maximum when the interest flows have the same sign 
(both givers and both takers) and a minimum when they have opposite signs, Figure 7-2. Based on the 
model from chapter 5, we see from the above two figures that our expectations are qualitatively borne out. 
The model also demonstrates that each player may exhibit both buyer and seller attributes, depending on 
the strategic value, Figure 5-17. The theory provides a quantitative realization that incorporates all the 
effects. 

7.6.3 Law of cooperation 

We further explore the law of cooperation with practical illustrations. I had a long argument with a 
former colleague some time ago about the distinction between consensus and coalitions. These two ideas 
often come up in the context of cooperation. He suggested the following distinctions (Laves, 1994): 
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“Consensus: ‘The process of abandoning all beliefs, principles, values and policies in search of something in which no 
one believes, but to which no one objects’. Margaret Thatcher, 1993. 
“Coalition: The art of enlisting divergent and independent interests to attain a valuable objective that everyone believes 
in, if perhaps for somewhat self-interested reasons. 
“Cognition: The process of educating people in preparation for using another technique to attain unity of purpose. 
“Coercion: Invoking higher authority to attain a short-term goal. It is most effective in preparation for coalition 
building OR when a decisive victory is possible.” 

A coalition is the identification of an objective that everyone believes in. This makes it distinct from the 
idea of a consensus that possibly nobody believes in. Our dynamic law of cooperation goes beyond the 
idea that the outcome is just better for everyone. Our proposal makes clear that a common ground is 
required and we have provided a precise definition of what this concept means. This common ground 

requires knowledge of each player’s interest flow , (a concept analogous to charge density in physics) 

as well as their payoffs. If there is no alignment, there can be no potential for cooperation. It is not hard to 
think of examples in city, state or national governments where common ground is found between 
divergent groups, Cf. (Ury, 1993). 

An example of this is the treaty that was signed between the United States and the Soviet Union 
during the Cold War. These countries did not share the same values, social systems or economic systems. 
They each saw however the distinct possibility that their possession of nuclear weapons could destroy all 
life on earth. This was their common ground. As a consequence they were able to cooperate on treaties 
that reduced the stockpiles of weapons without changing their ideologies.  They did not cease to be 
competitors. 

A coalition necessarily requires that the interest flows of the parties align. The consequence of no 
alignment is well illustrated when national political parties become so polarized on issues that they 
become incapable of being the representatives of the people they were elected to serve. From our decision 

process theory, we expect that under no cooperation, the only forces will be those of competition. If there 
is no code of conduct other than self-interest, the politics become dominated by special interest groups. 
The system looks more like the interaction of clans, gangs or medieval war lords than a creative cultural, 
economic and social environment. 

Neither our decision process theory nor game theory envisions that the existence of cooperation turns 
off the competitive nature of decisions. What does turn off that competitive nature is the establishment of 
a code of conduct. For example with the political example mentioned above, a positive outcome between 
parties occurs when they find that within their organization their views are not monolithic. A party might 
find that most of its members are conservative on fiscal matters but not on social issues. A liberal party 
might find that most of its members are liberal on social issues but not on fiscal issues. The two parties 
might find common ground by being fiscally conservative and socially liberal. To get to this type of 
distinction in the modeling we require our proposed decision process theory. It is a process framework 
that reflects how realistic systems behave. It is clear that such a process description needs to be dynamic 
since the common ground is usually in flux. 

The law of cooperation in our decision process theory requires a common ground, an overlap between 
the players’ interest flows or payoffs or both. Without such common ground there can be no cooperation. 
Without cooperation and without a code of conduct we conclude that behavior reverts to purely 
competitive self-interest. Thus to establish cooperation one needs both the establishment of appropriate 
codes of conduct and common ground. With cooperation, the possibility exists for the creation of a robust 
free market in the sense envisioned by (Smith, 1776). 

Because we envision a theory in which competition and cooperation play equal roles, we argue that 
there must be convertibility between utility associated with each. We turn to the question of convertibility 
and the related issue of opportunity cost in the next section. 

7.7 Dynamic law of opportunity 

Though there is a different utility function for each agent, our decision process theory identifies the 
utility of each agent with an energy contribution to the overall system.  
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7.7.1 Energy is convertible 

Energy is convertible and comparable. This provides the mechanism for exchange which is a new 
idea and can be subjected to test. It is not equivalent to the elementary assumption that all utility functions 
are the same. It is based on a specific underlying dynamic process based on the principle of least action. 

This principle gives a law of opportunity, Eq. (3.17), which determines the opportunity potential  

between active strategies in terms of the total energy and momentum of the system:  

  (7.16) 

The cooperation energy momentum tensor, Eq. (3.20) is determined by the cooperation potential  and 

the competition energy momentum tensor, Eq. (3.19) is determined by the payoff matrix. The left-hand 
side of Eq. (7.16) is the opportunity energy momentum tensor, which is a function of the opportunity 

potentials  and their gradients. In the absence of competition and cooperation, the opportunity 

potential is determined by the external set of stresses , which reflect the global connectivity of events. 

We thus allow any number of choices for utility and any set of frames in which to define express the 
strategies. We posit that the energy and momentum of the decision process can always be determined 
relative to these choices. This provides the basis for converting the effects from one frame of reference to 

another. The resultant frame effects  on the acceleration Eq. (7.15) are no less real than the economic 

cooperation and competitive effects. The frame effects are the consequences of our topological 
connectivity assumptions about utilities. These frame effects determine the orientation flux field tensor 

Eq. (2.27) and through the definitions the contracted curvature tensor , Eq. (2.36). We think of the 

frame effects as being generated by the narrative being told about what is happening. The narrative 
provides the framework and so hides the frame rotation effects in the way in which the story is spun.  

7.7.2 Law of opportunity  

Convertibility is closely tied to the game theory concept of equilibrium. From a mathematical 
perspective, equilibrium may suggest only the existence of fixed points of the dynamic equations. 
However, as we inquire more about what equilibrium means in game theory, we see that we are talking 
about the concept of events not changing, of events being stationary. Events are stationary because of 
some real attribute of the process, which is often called inertia. Decisions are processes that will tend to 
continue along whatever path they have been set; including staying at rest if that is where they started. 
This also implies that things in constant motion remain in constant motion along their initial direction. As 
with Newtonian and post-Newtonian physics, change occurs only when forces are applied. We thus 
envision that the law of opportunity provides for the possibility that utility can be converted to motion 
and vice versa. This possibility is a part of our dynamically extended game theory; specifically, the 
conservation law, Eq. (7.15). 

Concepts such as Nash equilibrium predict future behavior based on the assumption that players 
should behave rationally. If players have exhibited a behavior in the past, then they are likely to continue 
that behavior in the future. The longer they have exhibited that past behavior, the more likely they will 
continue to behave that way (Bayes, 1764). We take a different view of this tendency. We say that the 
observation of equilibrium is an observation of a real and tangible property of decisions and their 
connectivity that we call inertia or decision mass. If the tendency is very pronounced then the inertia is 
very large. Future behavior may in fact remain stable because there are no forces sufficiently strong to 
move the system. The inertia is not a prediction of the future but a statement about the reality of the 
decision process based on present and past observations. 

The law of opportunity also includes our notion of player’s interest flow. We associated interest flow 
with the possibility of a player being a buyer or a seller. Buying and selling are social transactions (Mill, 
On Liberty, 1947): 

“Again, trade is a social act. Whoever undertakes to sell any description of goods to the public, does what affects the 
interests of other persons, and of society in general; and thus his conduct, in principle, comes within the jurisdiction of 
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society: accordingly, it was once held to be the duty of government, in all cases which were considered of importance, to fix 
prices, and regulate the processes of manufacture. But it is now recognized, though not until after a long struggle, that both 
the cheapness and the good quality of commodities are most effectually provided for by leaving the producers and sellers 
perfectly free, under the sole check of equal freedom to the buyers for supplying themselves elsewhere. This is the so-called 
doctrine of Free Trade, which rests on grounds different from, though equally solid with, the principle of individual liberty 
asserted in this Essay.” 

If we don’t sell something but choose to buy, there is an opportunity cost associated with our choice to 
not sell in addition to the cost of buying (Mill, 1848). We therefore expect the utilities to be convertible.  

From our discussion of the law of cooperation (section 7.6), we expect that buyer and seller 
contribute with opposite signs to the (potential) energy, based on a physical and mathematical argument 
that their gradients produce the forces that generate motion. For example, when a company sets up to sell 
a product, they become both producers and consumers. Often they have to borrow money to create their 
business. In our decision process theory they create inertia associated with producing and inertia for 
consuming. We imagine that these distributions occupy different points in strategic space, as illustrated in 
our prisoner’s dilemma example, Figure 5-17. If we think of interest flow as analogous to charge, since 
opposite charges would normally attract and come together, we think the same occurs for opposite 
interest flow. Opposite charges would contribute with different signs to the potential energy, so we expect 
the same for opposite interest flows. From a business perspective it makes sense that the tension that 
keeps these interest flows apart is the opportunity for making a profit. Our decision process theory thus 
provides the insight that production and consumption contribute oppositely to the potential energy of the 
system. We extend the concept of convertibility to cover player’s interest flow then as well as inertia. 

7.7.3 Opportunity costs 

As an example of opportunity cost, we consider the choice of working at a low paying job 
(production) versus taking a year off to be trained (consuming) to do a higher paying job. If we take the 
year off we lose the wages of the lower paying job for one year. That is the opportunity cost of taking the 
training course. At the end of the year however we hope we will be able to find a higher paying job. We 
see that the opportunity cost assumes something about risk and the future. We certainly take a risk in not 
working for a year, especially if we already have the lower paying job. The risk is that we may not get 
hired for the higher paying job at the end of the year. The reward however is that if we do get hired, over 
the long term we are likely to receive more total income than we would have received had we stayed in 
our current job. 

There are other types of opportunity costs not associated with buying and selling. As an example of 
such an opportunity, suppose we have a car with known mechanical problems that will make the car 
inoperative. Do we keep the car or do we junk it? We have researched the cost of the repair of the 
mechanical problems and have determined the cost to be $2K. If the car breaks down tomorrow, we will 
be out the $2K as well as having to get the car towed to the junk yard. If we knew for sure the car would 
break down tomorrow, we would be ahead by simply driving it to the junk yard today. However, we don’t 
know for sure the car will break down. In fact we have been driving the car for the past year with this 
known problem. If the car drives for another year we save the price of buying a new car. Is the $2K a real 
cost? What we can say for sure is that it reflects the opportunity tradeoff of getting rid of the car versus 
keeping the car.  

In our decision process theory, we analyze the problem as follows. We have data from the mechanic 
who has service our car and many similar cars with the same problems. Based on what he has told us we 
have a current assessment of the utility of the car and whether the car will make it to the future. This is 
not the same as knowledge of that future. We make no assumption that the mechanic is in fact accurate in 
his assessment.  Based on our current assessment of the car’s utility we make our decision. If we could 
iterate the experience, then we would change our assessment of future utility as we gained or lost trust in 
our mechanic. Our mechanic too might improve. What we know for sure however is the future assessment 
based on our past experience. 

We propose that there is an opportunity utility that expresses the opinion of future utility for any 
given strategy, one that is neither cooperative nor competitive. So, just as payoffs express the view of how 
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players will respond in a competitive situation, opportunity utility expresses the view of how the future 
might unfold. This view is not a prediction of the future however; it is simply the current view of that 
future, just as the payoff matrix is the player’s view or utility measure of how all the other players will 
behave. Since we take utility to be energy, we consider keeping the car or junking the car to reflect 
(potential) energy. If the potential energy is higher to keep the car we hold on to it. If the potential is 
lower, we continue to drive it. The potential reflects a reality about our experiences to date with respect to 
the car. These experiences are about the past and present. To the extent that the process captures the 
essence of the ongoing decision processes, we do in the end gain knowledge of the future behaviors, 
though not as probability predictions.  

7.7.4 Opportunity utility 

We identify the opportunity utility with the stress tensor in our decision process theory, which 

provides the source term  in Eq. (7.15). The opportunity utility results from a tension between 

alternatives and so depends on the direction in space and time. We use the word tension because we 
believe it represents the force that moves the decision makers toward or away from choices based on their 
current knowledge of past behaviors. This is the tension that moves the system towards the future. 
Opportunity results from the elasticity or connectivity between strategic possibilities, such as the 
production and consumption required of a company to produce a product and make a profit. Decision 
processes have complex opportunity connections.  The challenge of models is to capture the essence of 
such connections to accurately portray observed effects. We provided a decision process theory for the 
stress tensor in section 7.11. 

In many practical cases, we can choose an ideal elastic situation in which the stress tensor is isotropic 
and characterized by two parameters, an energy density  and pressure . In rough terms, the energy 

density measures the inertia of the system and the pressure is a measure of the opportunity. The force is 

proportional to the gradient (rate of change) of the pressure with respect to position, . More 

precisely, we get the source term  in Eq. (7.15) using Eq. (2.45) in terms of the inertia and opportunity: 

  (7.17) 

We characterized the ratio of energy density to pressure as the resilience  of the system in the 
prisoner’s dilemma, chapter 5, which we argue is a measure of the system’s elasticity. If one looks into 
the dynamic mechanism of the theory, the collocation of what we can call the decision mass is the 
manifestation of inertia, Cf. Figure 5-3. The pressure gradient is the manifestation of opportunity and 
opposes any forces, such as the player interest flow, that try to concentrate the decision mass. 

As an example of this more precise definition of opportunity, consider a property of projects that as 
their size grows, there is progressively more overhead. Overhead includes the increased number of 
managers required to oversee the project. The assumption is that these managers perform no work. They 
make no widgets or write no code. Because of their addition, the number of people required grows faster 
than linear with the size of the project. This overhead is a manifestation of resilience (Thomas G. H., 
2006); the larger the resilience of the system , the larger the overhead. Ordinarily one thinks of 

overhead as a waste of resources. We suggest however that the identification of  is also the measure of 

the opportunity. An organization that has zero overhead may be incapable of responding to new 
situations. An organization with high overhead may have trained more people, since many may have been 
idle and managers may have been skillful in training. When more work shows up unexpectedly, such an 
organization may be better able to handle the fluctuations. In this regard, it is an interesting fact that 
organizations oscillate between high and low overhead. Perhaps this is the dynamics between having too 
much opportunity versus not enough. 
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7.7.5 The three laws—competition, cooperation and opportunity 

We have three strong laws that govern decision making based on competition, cooperation and 
opportunity. In each case there is an associated potential that is determined based on a presumed 

connectivity. The competition potential  is determined by the mixed stress , Eq. (3.16): 

  (7.18) 

This is equivalent to Eq. (7.12). The cooperation potential  is determined by the stress components 

 from Eq. (7.14). The opportunity potentials  are determined from the active stress components 

, Eq. (7.16). The stress tensor thus provides the critical ingredient to the causal relationship between 

present and future events. It replaces the Bayesian notion of probability for predicting the future. It 
reflects the existence of global connections between events.  

We find support for global connectivity from Systems Dynamics (Forrester, 1961) and their causal 
and global perspective. In many practical examples they have been able to identify the connections and 
find that in fact they are easy to spot. What matters is the mental set to look for them. We turn to this in 
the next section. 

7.8 Global connections 

We have noted that using physics and differential equations for modeling economic behaviors is quite 
old (Edgeworth, 1881). In more recent times, the concept of using differential equations to model social 
phenomena was proposed by (Forrester, 1961) and used by the Club of Rome (Meadows, Meadows, 
Randers, & Behrens, 1972, p. 26) to describe what might happen on a worldwide basis given initial 
conditions on such things as population, birth rates and resource consumption. 

“We too, have used a model. Ours is a formal, written model of the world22. It constitutes a preliminary attempt to 
improve our mental models of long term, global problems by combining the large amount of information that is already 
in human minds and in the written records with the new information processing tools that mankind’s increasing 
knowledge has produced—the scientific method, systems analysis and the modern computer.” 

The important insight is that differential equations provide the large scale structure of time and space 
(Meadows, Meadows, Randers, & Behrens, 1972, p. 24) 

“Although the perspectives of the world’s people vary in space and in time, every human concern falls somewhere 
in the space-time graph. The majority of the world’s people are concerned with the matters that affect only family or 
friends over a short period of time. Others look further in time or over a larger area—a city or a nation. Only a very few 
people have a global perspective that extends into the future.” 

The Club of Rome’s insistence on considering both large distances and large times matches the view of 
(Hawking & Ellis, 1973), who brought insight into the large scale structure of space and time at the 
cosmological level. The latter view has provided both philosophical and mathematical guidance to us for 
creating a decision process theory.  

We thus see game theory as an accurate, but local and provisional view of how strategic decisions are 
made over short intervals of time and short distances in space. Using the above language of the Club of 

Rome, game theory translates well for family and friends, for cities and for states but not all of these 
simultaneously. Consider the following military example. Traditional armies can envision battles with 
large armies and armaments. Armies study how the last war was fought. They have trouble envisioning 
new wars that may be fought under different conditions as exemplified by the urban war currently going 
on in Iraq. The standard model of behavior as used in game theory is not sufficient to help one think out 
of the box; one needs courageous generals. Our view of a theory that addresses the large scale structures 
of decisions in space and time is that we must change the standard model to encompass such game-
changing strategies, without necessarily relying on the existence of such generals. 

Indeed it was our search for a theory that would locally match game theory yet allow for large scale 
structures that led us to theories with new topologies. We needed theories that in some sense were locally 

                                                      
22 “The prototype model on which we have based our work was designed by Professor Jay Forrester of the Massachusetts Institute of 

Technology. A description of that model has been published in his book, World Dynamics (Cambridge, Mass.: Wright-Allen Press, 1971).” 
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flat such as is the shape of the earth, yet would correctly see the global curvature characteristics. The 
formal mathematical structures with this property are known in mathematical literature (Steenrod, 1951). 
They have been independently created as bases for physical gauge theories starting with Maxwell and 
Einstein and used to understand the large scale structures of space and time (Hawking & Ellis, 1973). 
Such theories combine the power of topology, algebra and differential geometry. In other words our goal 
was not to replace what has been learned about economic behaviors from game theory but to extend those 
theories. 

Before addressing the large scale structures that are possible in such theories and the motivation for 
expecting such behaviors we obtain from systems dynamics, we note that game theory has not entirely 
relied on the algebraic approach. There have been studies of continuous and learning behaviors for 
repetitive games (Clemhout & Wan, 1989). There have been approaches that use the physics metaphor to 
focus on the stochastic nature of economic processes (Murphy, 1965). Decision Analysis also focuses on 
the stochastic nature (Howard, Dynamic Programming and Markov Processes, 1964), according to the 
Wikipedia article on this subject (Howard, http://en.wikipedia.org/wiki/Ronald_A._Howard, 2010). We 
expressed reservations towards this approach in section 7.3. Though some of these approaches are 
differential in character, we feel they don’t address the global connections suggested by the Club of 

Rome. 
In this context, we feel that our decision process theory is most closely aligned with the approach 

suggested by (Forrester, 1961) based on the causal and continuous nature of time. There are many insights 
to be gained. We start with a summary of the key elements, not the least of which is the availability of 
improved computational techniques. An important element of great practical advantage is that there are 
multiple software packages that make application of systems dynamics no more difficult than applying a 
spreadsheet model to an accounting problem. In this regard, we have found the iThink® software by High 
Performance Systems (Richmond, 2001) to be particularly illustrative.  

7.8.1 System modeling  

The general theoretical concept of systems models is that forecasting requires more than correlations, 
it requires causation and closed loop thinking.  Causal thinking is typical of physical models as well. As 
an example, though early models of weather forecasting relied more on statistical models than on causal 
flow, current weather predictions are based entirely on a causal model of fluid flow (Friedman, 1989). It 
might be argued that the maturity of the field dictates one approach rather than another. So although 
decision making provides an excellent example of a causal forecasting problem, the field is not yet 
sufficiently mature for these operational-thinking techniques. We argue on the contrary that the system 
thinking is useful even at the earliest stages of thinking about any forecasting problem.  

The basic concepts that underlie systems dynamics and systems thinking are flows, stocks and closed 

loops. These concepts provide an abstraction of the underlying differential equations that are sufficiently 
simple to be understood by school children and CEO’s (Senge, 1990).  In the software, stocks are 
represented as rectangles, flows as faucets and the causal nature or cause and effect is indicated by curves 
with arrows indicating the flow of time. We give an example Figure 7-3. We model predators, such as 
foxes and prey, such as rabbits. The number of predators is collected in the stock or reservoir labeled 
predator, and the number of prey is collected in the stock labeled prey. The number of predators increases 
in proportion to the number of prey, since they are its food source. Correspondingly, the number of prey 
decreases in proportion to the number of predators. In each case, the numbers of predators  and prey 
increase due to their own birth rate as set by parameters mu ( ) and lambda ( ), respectively.  

The prey, such as rabbits might also increase because of their food source (carrots). The bi-directional 
character of growth is represented by flows that have arrows that point in both directions. We represent 
the continuous nature of time and approximate the discrete nature of creation or demise of predators and 
prey by a continuous amount in their reservoir. The picture we create in terms of flow results in a 
quantitative description of the populations Figure 7-4, which in this case has unusual structure in no small 
part due to the additional food source of carrots. 

µ λ
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Figure 7-3: Systems Dynamic 

Predator-Prey 

 

Figure 7-4: Predator Prey populations 

What is truly significant about the systems dynamics approach is not its application to the simple 
problem above, whose simplicity was there only to provide a convenient way to explain the concepts. It 
forces one to think beyond the initial problem, to all effects that might be significant. For example, in 
addition to considering foxes and rabbits, we forced ourselves to consider carrots. Without food, the 
rabbits will die and so then will the foxes. These examples of global connectivity and causal connectivity 
are the key aspects of the Club of Rome’s study of the world’s problems. Events big and small are 
connected in both time and space. 

The stocks and flows represent both these causal and global connections. They can be applied to a 
variety of concepts from physical aspects such as the number of predators and prey, the carrot crop as 
well as to more psychological or social aspects. For example, in applying this approach to a business, one 
can model not just productivity and staffing but the burnout rate and thereby learn that burnout can play 
an important role in understanding delivery times of products. The Club of Rome dealt with many issues 
that have a social character, such as the harm done to the environment by the burning of fossil fuels. 
Certainly the amount of carbon dioxide is a physical attribute; what kind of attribute is harm? 

We thus see clear advantages to the systems approach over statistical or stochastic approaches. To 
quote from (Richmond, 2001, p. 19): 

…In short, Operational Thinking is a big deal! It’s a big deal because, like Closed-Loop Thinking, it has to do with 
how you structure the relationships between the elements you include in your mental models. Specifically, Operational 
Thinking says that neither “correlation,” nor “impact,” nor “influence” is good enough for describing how things are related. 
Only causation will do!” 

This operational approach has been applied successfully to real-world situations and the approach 
produces actionable insight. Real examples involve not a few equations as in the predator-prey example, 
but hundreds or even thousands of coupled differential equations. Without an expert consultant, it is easy 
to get lost in the details. We want a systems dynamics approach with its hundreds of equations that also 
fosters a conceptual understanding of the problem. 

7.8.2 Physically based models 

The motivation for moving to a physically based model, a model based on a least action principle, is 
to get such a conceptual understanding; a better handle on the assumptions for the causal and global 
connections. We want to use the scientific method to improve on the assumptions. Despite conceptual 
insight, we nevertheless expect that the models will still have lots of equations. Our example of the 
Prisoner’s Dilemma, chapter 5, has hundreds of equations. However, we believe that the concepts are 
more organized and easier to evaluate, change and/or extend. The example of making accurate weather 
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predictions is an excellent example of both attributes: the fluid flow model involves a large number of 
equations yet the concepts are orderly and the causal and global connections clear. 

In our decision process theory, we have emphasized both the causal and global connections between 
what is known and what decisions are taken. We have created the closed loops and they have the same 
significant effect in our decision process theory as they would be expected to have from an Operations 
Systems viewpoint. For example, in our decision process theory, the flow of decisions creates the values 
of the payoff fields. The values of the payoff fields dictate the behavior of the flows. 

Understanding the consequence of systems dynamics models and physically based models requires 
significantly more sophisticated computing tools than the original game theory models. The original game 

theory models could be solved as linear programming problems: coupled linear (algebraic) equations 
with constraints. This may have been challenging in 1950 for corporations such as Rand, but is not as 
challenging today. We have already noted that Systems Dynamics models require stock-flow software 
(Richmond, 2001). The number and complexity of such equations is challenging for hand-calculations but 
has been addressed effectively by commercial software. Our solutions to the Prisoner’s Dilemma relied 
heavily on solving the coupled ordinary differential equations using the symbolic programming 
Mathematica® software by (Wolfram, 1992). To make further progress on the approach outlined in this 
book, we apply more powerful techniques when there are multiple active strategies and solve the 
corresponding coupled partial differential equations (Courant & Hilbert, 1962). Progress in computing 
power makes this extension possible. We have used Mathematica©, with the numerical method of lines 
technique for solving partial differential equations in chapters 8 and 11. 

We have identified competition, cooperation, inertia, opportunity and global connections as key 
mechanisms that have their origin in historical discussions and have a place in our decision process 

theory. The next section summarizes how we apply this information to the numerical solution of decision 
processes. 

7.9 The known behaviors 

Any student who hopes to apply our decision process theory must be able to take any economic or 
decision problem, put it into normal form, use natural units and extract the payoffs, game values and Nash 
equilibriums. The next step is to use this information as the known boundary conditions so that the 
equations developed in chapter 4 can be applied and solved. We recall the main ideas from section 4.5, 
which provides a subset of solutions to the field equations: 

• Games are specified in the normal-form coordinate basis by providing the mixed strategy 

articulated as flows  for each (active) pure strategy .  

• For each pair of pure strategies there is an outcome or payoff to player , which we label as 

.  

• We identify the players as corresponding to the inactive strategies. 

• We identify true players as those that are accountable for some subset of active strategies and 
observer players or observers as those players who are accountable for no active strategy. 

• We identify the code of conduct by stating which of the available active strategies are 
restricted to be inactive. 

• The payoffs and flows are considered as known behaviors at some point in time and some 
initial choice of strategies.  

• At this point, we may have determined only a subset of the known behaviors. Further 
research or assumptions may be required to complete the set. We deal with that later. 

• Information in the normal-form coordinate basis is transformed to the co-moving coordinate 

basis by means of the stationary coordinate transformations, , of the 
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inactive strategies and the dynamic coordinate transformations, , 

of the active strategies.  

• These transformations obey the equations specified in Table 4-1. As stated above, we identify 

the active flow transformation  with the known behavior strategy flows. 

• The normal-form coordinate basis payoff fields  are assumed to be specified as part of 

the known behaviors. These are related to persistent attributes  from Table 4-1, 

which in turn are determined from the scalar orientation potentials in the co-moving 
coordinate basis.  

• We specify the payoff fields as follows: we use the concept of preferences to identify the 

spatial components . These preferences, including internal preferences are assumed to 

exist following the utility arguments in section 7.4. In terms of the assumed known behavior 

of the un-normalized flow , the time component is set .by 

the requirement that the product of the payoff field and flow is zero. The time components are 
thus the normalized values of the expected payoffs assuming the known behavior flow. 

• The inertial constant  provides a measure for how quickly the system responds to change. 

This constant is not determined initially, though it may be determined from sensitivity 
analysis. 

• There are different types of orientation potentials, which can be characterized by their rough 
correspondence to analogous fields in physical models. One grouping given in Table 4-4 is 
analogous to electromagnetic fields. The streamline solutions correspond to the case that the 

electric field components  are zero. As a consequence, the co-moving payoff fields  

are stationary. A second consequence is that these magnetic field components are determined 
by the currents analogous to Ampere’s law in physics. 

• A second grouping, given in Table 4-5, is related to bond forces. The symmetric tidal bond 

matrix  components are stationary. These terms are not as well studied in the physics 

literature and so no direct analogies come to mind. 

• The third grouping, given in Table 4-6, provides the inertial stress components. Whereas the 
orientation potentials describe the rotational and strain aspects, the stresses describe the 
forces that act on the system.  

• To the extent that the stresses are stationary, we expect the acceleration components  to be 

stationary. This leads to the charge gradient components  being stationary as well from 

Table 4-5.  

• It appears at this point that the tidal magnetic components  might depend on the proper 

time. However, we take the point of view for streamline solutions that these scalar fields as 
well be stationary. 

In writing out these steps, we impose no limitation on the number of players or the number of strategies 
available to each player.  

We make no assumption about the codes of conduct other than they must be identified. For each 
player we assume the existence of at least one code of conduct associated with that player’s self-interest. 
We recall our concept of equivalence that any strategy that is inactive can be considered as an additional 
player with no associated strategy. Thus the code of conduct is an attribute of every game. 

We turn to game theory for help in specifying some of the known behaviors, for articulating the 
intensive form of the game and for an understanding of mixed strategies. Nevertheless our decision 

process theory has distinct differences. The known behaviors, namely the given and appropriate 
boundary conditions, are used with partial differential equations, to obtain well-behaved solutions. 
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In chapters 8 and 11 we have obtained numerical solutions for problems with two or more active 
strategies. We use techniques that have been used in mechanical and electrical engineering on similar 
problems (Courant & Hilbert, 1962). 

As part of determining known behaviors, it is helpful to think of stationary situations, though not 
because they are the common place in the real world. Rather we study them because from a study of how 
stationary behaviors change when subjected to an impulse, we learn about the dynamic mechanisms. We 
provide more details on stationary behaviors in the next chapter. 

We thus arrive at a practical, calculus-based process for analyzing decisions. As a reminder, our 
process grew out of an inquiry into game theory, which is not only an inquiry about recreational games 
but about economic behaviors (Von Neumann & Morgenstern, 1944). As such, game theory covers much 
of what should be included in a theory of decisions. We have generalized this approach to a rich dynamic 
theory of decision processes.   

7.10 Outcomes 

From this chapter the student should have a broad understanding of classical game theory and how 
that theory is related to our decision process theory. Below we provide the detailed outcomes for each 
section. 

From section 7.1, the student will have available a bibliography of relevant discussions from the 
literature of game theory and economics from which to judge decision process theory. 

From section 7.2, the student will have learned a theoretical foundation and reasons why a necessary 
requirement for robust decision processes is the existence of a code of conduct.  Without a code of 
conduct, we can be led into paradoxes such as the prisoner’s dilemma and the tragedy of the commons. 

From section 7.3, the student will have learned the advantages and pitfalls of applying the concepts of 
probability and uncertainty to decision processes. The student will have learned that in our decision 

process theory, each player sees an advantage to diversify their portfolio of choices and choose plays 
according to some frequency distribution of pure strategies, called a mixed strategy. It is not required that 
this frequency distribution be a prediction of what is likely to happen in the future. 

From section 7.4, the student will understand how to identify a different utility function for each 
agent. The theory identifies the resultant payoff fields with the energy of the system. Energy is 
convertible and comparable, though utility is not.  

From section 7.5, the student will have learned the relationship between the max-min rule of game 
theory and our dynamic law of competition for obtaining the flow vectors from the payoffs, Eq. (7.12). 
The economic equivalence principle is that our view and the max-min rule are the same for two-person 
zero-sum non-cooperative games. 

From section 7.6, the student will have learned the proposed fundamental law of cooperation, Eq. 
(7.14). Players contribute differently to this law depending on their interest flows, whether they are givers 
or takers. The law of cooperation in our decision process theory requires a common ground, an overlap 
between the players’ interest flows or payoffs or both. Without such common ground there is no 
cooperation. Without cooperation and without a code of conduct we conclude that behavior reverts to 
purely competitive self-interest. Thus to establish cooperation one needs both the establishment of 
appropriate codes of conduct and common ground. With cooperation, the possibility exists for the 
creation of a robust free market in the sense envisioned by (Smith, 1776). 

This provides in section 7.7 a mechanism, the law of opportunity, for exchange which is a new idea 
that extends the concept of value. It is not equivalent to the elementary assumption that all utility 
functions are the same. It is based on a specific underlying dynamic process based on the principle of 

least action. In a dynamic system, we can convert utility between players, as well as convert between 
interest flow, inertia and opportunity. 

From section 7.8, the student will have learned the necessary existence of global connections and the 
elementary aspects of systems dynamics and the importance and generality of both the causal and global 
connections. The student will have learned the importance of closed loops and they have the same 
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significant effect in our decision process theory as they would be expected to have from an Operations 
Systems viewpoint. For example, in our decision process theory, the flow of decisions creates the values 
of the payoff fields. The values of the payoff fields dictate the behavior of the flows. 

In section 7.9, the known behaviors, namely the given and appropriate boundary conditions, are used 
with partial differential equations, to obtain well-behaved solutions. This section ties the ideas of game 
theory to the main body of work in the earlier chapters of the book. 

7.11 Exercises 

1. Show that the model calculation in chapter 5 can be changed slightly to conform to a decision 
process in which each player has two strategies, honor the code of conduct (H) and break the 

code of conduct (B). The inactive strategies will be  and the active strategy 

will be . Furthermore show that the most general initial payoff matrix for each player 

can be chosen to have the following form, where the order of the rows and columns is 

: 

  (7.19) 

2. Write the TIC-TAC-TOE game in extensive form. 
3. Rewrite the TIC-TAC-TOE game in intensive form. Show that it is a strictly determined game. 

What is the Max-Min solution?  
4. A pair of blue bombers is on a mission: one carries the bomb and the other carries equipment. 

The Blue/Red payoff matrix is  (Williams, 1966, p. 47). Determine the mixed 

strategies for each. The rows and columns are labeled: Blue 1=bomb carrier in less-favored 
position; Blue 2=bomb carrier in favored position; Red 1=attack on less favored position; Red 
2=attack favored position. 

5. We are told the following river tale (Williams, 1966, p. 50): “Steve is approached by a stranger 
who suggests they match coins. Steve says that it’s too hot for violent exercise. The stranger 
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says, “let’s just lie here and speak the words ‘heads’ or ‘tails’—and to make it interesting I’ll 
give you $30 when I call ‘tails’ and you call ‘heads’, and $10 when it’s the other way around. 

And just to make it fair—you give me $20 when we match.” The payoff matrix is ; 

determine the mixed strategies for Steve and the stranger. 
6. The attack-defense game (Williams, 1966, p. 51): “Blue has two installations. He is capable of 

successfully defending either of them, but not both; and Red is capable of attacking either but 
not both. Further one of the installations is three times as valuable as the other.” The attack or 
defense of the lesser installation is labeled “one,” the other is “two.” The payoff matrix for blue 

is . Determine the mixed strategies for each. 

7. The music hall problem (Williams, 1966, p. 52): “Sam and Gena agree to meet outside the Music 
Hall at about 6 o’clock on a winter day. If he arrives early and she is late, he will have to drive 
around the block, fighting traffic and slush, until she appears. He assigns to this prospect a net 
worth of -1. If she arrives early and he is late, she will get very cold and wet. He estimates his 

joy-factor in this case as -3.” The payoff matrix is . Determine the mixed strategies for 

each. 
8. The huckster (Williams, 1966, p. 56): “Merrill has a concession at the Yankee Stadium for the 

sale of sunglasses and umbrellas. The business places quite a strain on him, the weather being 
what it is. He has observed that he can sell about 500 umbrellas when it rains and about 100 
when it shines; and in the latter case he also can dispose of 1000 sunglasses. Umbrellas cost him 
50 cents and sell for $1; glasses cost 15 cents and sell for 50 cents. He is willing to invest $250 
in the project. Everything that isn’t sold is a total loss (the children play with them). The payoff 

matrix is buying versus selling with positions rain and shine: . Determine the 

mixed strategies. 
9. Write the game paper-scissors-stone game in extensive and intensive form. Show The game 

consists of two players, each of whom chooses one of the three choices: paper, scissors or stone. 
The payoffs are that scissors cuts paper, paper covers stone, and stone dulls scissors. This game 
is not strictly determined. Determine the max-min mixed strategy solution Cf. (Williams, 1966, 
p. 98) who suggests the following payoff matrix for each player, where the rows and columns are 

labeled scissors, paper and stone: .  

10. Determine the optimum strategy for playing the game of Morra (Williams, 1966, p. 163). There 
are two players. Each player holds up either one, two or three fingers and simultaneously guesses 
what the other player will display. If just one person guesses correctly, the payoff is the number 
of fingers held up. There are 9 pure strategies for each player that can be labeled with two 
numbers, the number of fingers held up and the guess as to what the other player will do. The 
pure strategy 13 is to hold up 1 finger and guess 3. Show that the stationary behavior involves 
only three of the pure strategies, 13, 22 and 31. Show that they should be played in the ratio 
5:4:3.  
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