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9 Two-strategy two-person decision processes 
Based on our work in the last chapter, we have sufficient grounding to specify the known behaviors. 

The reasonableness of this specification may not be entirely obvious until we have worked out a few 

examples. In thinking about what examples to pick, we note that game theory practioners are familiar 

with a large number of two-person zero sum games. There is a large literature around such games. Many 

of those games for simplicity have been reduced to ones in which each player has just two strategies. This 

seems to be a good place to start.  

In this chapter, we consider two players, each of which has two strategies and assume that the players 

agree to a code of conduct in which the sum of all strategies is inactive; thus we have three active 

strategies. We explore harmonic solutions, section 4.5.7, based on the player fixed frame model. This still 

leaves many possible solutions. This model framework provides significant insight into both the vorticity 

free fall harmonic behaviors and the system response harmonics. 

As a specific game, we choose one of the examples from chapter 7, exercise 6, which is the attack-

defense game from (Williams, 1966). The details for how to deal with such models has been given in the 

previous chapter. For example, the preliminary transformation Eq. (8.58) can be done as exercise 28, 

section 8.12, which also provides the null vector Eq. (8.89).  

9.1 Attack-Defense model 

We recall that the attack-defense game posits that “Blue has two installations. In normal form, he is 

capable of successfully defending either of them, but not both; and Red is capable of attacking either but 

not both. Further one of the installations is three times as valuable as the other.” The attack or defense of 

the lesser installation is labeled “one,” the other is “two.” The payoff matrix for blue is: 

  (9.1) 

There are a number of assumptions involved at this early stage that need to be highlighted. In arriving 

at the payoff matrix, the argument is made that one installation is three times more valuable than the 

other. Hence to “Blue”, a defense of the less valuable installation and a corresponding attack on that 

installation is worth  units. If the attack is made on the more valuable installation, “Blue” sees only  

unit of value. Similarly, an attack on the lesser installation while defending the valuable has a value  

units while an attack on the more valuable one (and defending it) is worth again  units. The numbers 

make sense, but remember that in game theory any other payoff matrix in which we change the scale or 

add a constant will have the same strategic consequences. In decision process theory this is no longer the 

case, so we consider as dynamic the scale factor and additional constants. 

We scale the payoff for “Blue” by . This changes the model. We make a different argument for 

“Red” and consider the following payoff: 

  (9.2) 

We argue that if “Red” attacks the lesser of the two targets and it is defended, there is no value; similarly 

if “Red” attacks the other target and it is defended. “Red” actually gets pleasure or reward of  unit if the 

attack is made on the lesser target and it is undefended. The reward is  units if the attack is made on the 
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greater value target and it is undefended. The payoff matrix here is from “Red’s” point of view. For our 

numerical work we scale “Red” payoffs by .  

We don’t have a zero-sum game but a constant sum game. Each player sees a positive expected 

payoff. What we see in the numerical results is a difference in the dynamics for the game as stated and the 

zero-sum game implicitly implied by the original problem statement. The rule in game theory is that 

nothing depends on a linear scale transformation; this is not true in decision process theory. The first 

conclusion is that the scale changes the “size” of the strategy space; the smaller the scale the larger the 

effective space. We have scaled down by a factor and get a space that has approximately unit size. 

We lay out the behavior in the following subsections for this model and our choice of parameters, 

which reflects primarily a free fall behavior (section 8.7). We elaborate on other models in the exercises 

at the end of the chapter (section 9.5). Of particular interest will be a slight variant of the free fall model 

where we add a small acceleration behavior with a characteristic frequency about half that of the free fall 

frequency. We proceed now to the details of the model behavior. 

9.2 Locked behaviors 

In the prisoner’s dilemma, we found that the elastic force populated a high pressure zone, Figure 5-3. 

Associated with this behavior was a characteristic rise in the acceleration gradient, Figure 5-4. In the 

inquiry into behaviors for  dimensions we again found corresponding behaviors in Figure 8-3 and 

Figure 8-4, which we characterized as locked behavior. It has been found in other fields, such as the study 

of weather phenomena, that there is value in focusing on areas of high pressure and low pressure. Based 

on the locations of the highs and lows we then get a more complete picture of the overall behavior 

patterns. For that reason we believe that looking for the cause of locked behavior may be fruitful.  

For the, the attack-defense model, the parameter choices by themselves don’t lead to the locked 

behavior observed in the aforementioned references. In fact the initial choice of parameters lead to a 

pressure that is negative. We see from Eq. (8.19) that terms contribute with both signs. Our analogy to 

physical systems suggests that the average pressure and the energy density should both be positive 

(Hawking & Ellis, 1973). An elastic system is usually thought to be one that resists being pressed. A 

positive energy density is usually thought to be related to the causality of the system; effects occur after 

causes. If our initial parameter choices generate a negative pressure, the solution is to modify those 

parameter choices by increasing the size of one or more terms that provide positive contributions. We call 

solutions that everywhere have positive pressure and energy density solutions with locked behaviors.  

There are several ways we can provide positive contributions: we can add elastic pressures , 

which are currently set to zero; as with the prisoner’s dilemma we can add strong compression terms 

; we can add rotational terms , which is a classic way to balance negative pressure or collapse; 

or we can add player interest terms , which also generate rotational effects. All of these provide 

positive contributions to the pressure and would generate locked behaviors. We have chosen to generate 

our numerical examples by increasing the player interest. We do this by increasing the strategy bias field 

 for each player. We get a result that operates symmetrically on each player. From the model 

considerations Eq. (8.58), this corresponds to lowering the parameter  for each player. We find that 

we must lower these values sufficiently so that the null space vectors for each payoff are no longer time-

like but space-like. We see no inconsistency in this however. There is still a time like vector that defines 

the flow of energy momentum. The result is that we have a force in the co-moving frame that traps the 

behaviors and generates a strong player interest for each player. This effect we believe is observable: we 

will see that we generate a player interest that increases for Red and decreases for Blue as player 1 (Blue) 

becomes dominant .   

Thus for a sufficiently strong player strategy bias field , we obtain the following locked 

behaviors for the pressure (Figure 9-2) and the acceleration (Figure 9-1). 
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Figure 9-1: Attack defense  
 

Figure 9-2: Attack defense  

The key to achieving this is to focus not on the game value but on the player strategy bias field, . Up 

to now we have assumed that the two are simply related as in Eq. (8.62), allowing for slight discrepancies 

due to the orthogonalization process. We have assumed that the null space of the payoff vector is always 

related to the Nash equilibrium. This assumption however does not lead to locked behavior. We see no 

reason to hold on to that assumption. We can choose the player strategy bias field independently from the 

equilibrium flow, which leaves us free to set the form of the flow at what we have designated as the still 

point. We are also free to choose the player strategy bias field to conform to our expectations for the 

growth of the player interest along the various strategic directions.  

As an example, we modify “Red” so that the payoff sees a different value for attacking the two sites: 

  (9.3) 

As a consequence we try a different still point equilibrium based on what each force sees: 

  (9.4) 

The order of indices has “Red” first and “Blue” second. The proportionality constant is adjusted so that 

the flow is a unit vector; as before we rescale the payoff by .  

 

Figure 9-3: Attack defense  

 

Figure 9-4: Attack defense  

If we choose the player strategy bias field independently, we add an amount, the player interest for 

each player that represents that player’s interest, which for our numerical example in this section is  

units for each player (Cf. section 8.12, exercise 20 as well as the exercises at the end of this chapter). This 

locks the pressure and acceleration as well as provides a distinct look for the compression (Figure 9-3) 

and engagement (Figure 9-4). In particular, “Blue” and “Red” exhibit strong player engagement away 

from the still point, even though they are “entitled” at the still point.  

9.3 Decision flow 

In this section we provide suitable initial starting points for free fall solutions (section 8.12, exercise 

20).  Conceptually, we start with the quasi-stationary solutions Eq. (9.7) from exercises 1-2 associated 
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with linear growth of the coordinates in Eq. (8.1) and no harmonic terms . Such solutions 

can be evolved to free fall solutions (exercises 1-19), leading to the known-condition-based behaviors, 

Figure 9-5 and Figure 9-6. The corresponding streamlines are straight lines as seen in the normal 

coordinate frame  of active variables.  

Though the behavior is free fall on the hypersurface , away from the hypersurface there are 

acceleration effects for the active metric components. See for example exercise 11. We can make other 

choices that lead to a harmonic spectrum or summation over multiple harmonics of the form Eq. (8.1). 

We thus obtain exact solutions of free fall and acceleration that were proposed previously (Thomas G. H., 

2006), corresponding to situations in which the metric components are not constant and the initial 

conditions arbitrary. See exercises 10 and 13. 

 

Figure 9-5: Attack defense flows 

 

 

Figure 9-6: Attack defense intercepts 

 

The free fall behavior in which some rotation is possible and replaces or becomes our assumption of 

Nash equilibrium (Figure 9-7), arises from the initial flows and the construction of an orthonormal set of 

vectors using the Gramm-Schmidt process, section 8.2: 

  (9.5) 

These initial conditions set the vectors of the harmonic flow, Eq. (8.81), Figure 9-9 , Figure 9-10, Figure 

9-11, and Figure 9-12.  Although we obtain streamlines for the flow that are constant, for the other frame 

transformations  we get harmonic behaviors. We also get harmonic behaviors when , such as 

Figure 9-8 and Figure 9-27 (exercise 13).  
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Figure 9-7: Attack defense composite 

payoff  

  

Figure 9-8: Harmonic attack-defense flow 

vectors  

The initial attack-defense harmonic behaviors for the frame transformations reflect the boundary 

conditions we impose as part of the known conditions. We see that at time , we align  with  

(Figure 9-9),  with  (Figure 9-10),  with  (Figure 9-11) and  with  (Figure 9-12). In each case 

the corresponding “diagonal” transformation starts at . The orthogonalization process, Eq. (9.5) and 

the transformation equations between gradients and the frame transformation, Eq. (4.130) determine the 

remaining components. 

 

Figure 9-9: Frame transformations 

 for attack-defense model 

 

Figure 9-10: Frame transformations 

 for attack-defense model 

 

Figure 9-11: Frame transformations 

 for attack-defense model 

 

Figure 9-12: Frame transformations 

 for attack-defense model 

In the rest of this section we expand upon the known conditions that determine our attack-defense 

free fall solutions. In the exercises, we suggest how to include additional acceleration effects that can be 

added on top of the free fall solutions.  
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9.4 Outcomes 

In this chapter the student will have learned from the exercises how to compute the time dependence 

of the quasi-stationary player fixed frame solutions of the attack-defense model. It is an archtype of how 

to apply decision process theory to decision processes. Some of the key ideas from this chapter, especially 

the exercises, are: 

• Locked behaviors 

• Linear flows 

• Free fall harmonics 

• System harmonics 

• Composite payoffs 

• Streamline surfaces as seen in the normal coordinate basis 

• Time behavior of pressure contours  

• How to set the gauge and solve the associated partial differential equations 

• The allowed physical region for streamlines. 

9.5 Exercises 

1. Starting with the linear harmonic Eq. (4.96) that leads to Eq. (4.97), show that with the gauge 

condition Eq. (4.136) and the divergence Eq. (8.10) of the acceleration, we have the following 

equations in the co-moving orthonormal basis: 

  (9.6) 

2. In the notation of the  model, show that the equations for exercise 1 in the co-moving 

orthonormal basis are: 

  (9.7) 

3. Redo the attack defense model of section 9.1 with an initial vorticity vector . Show 

that the resultant vorticity Figure 9-13 is what you would expect. Show that the resultant pressure 

Figure 9-14 shows evidence that the locked behavior is substantially modifed. How does a non-

zero vorticity at the still point change the value of the characteristic potential? How do you 

modify Eq. (8.82) to allow for non-zero initial vorticity? What does it mean to have a non-zero 

vorticity, if we argue that at the still point, the players are not engaged and are entitled? Can we 

have still points where the pressure is a minimum as opposed to a maximum? 

 

Figure 9-13: Composite payoff 

 with initial spin 

 

Figure 9-14: Pressure  with 

initial spin 
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4. Starting with the quasi-stationary harmonic Eq. (4.100) that leads to Eq. (4.140), show that with 

the gauge condition Eq. (4.136) and the divergence Eq. (8.10) of the acceleration, we have the 

following equations in the co-moving orthonormal basis that determine the position scalars in 

terms of harmonics: 

  (9.8) 

5. For  dimensions, write the recursion in Eq. (9.8) in vector form: 

  (9.9) 

6. For solutions to problem 5, show that the initial conditions can be set at  by specifying the 

coordinate and frame transformations: 

  (9.10) 

7. As an application of the attack-defense model of section 9.1, the following streamline surfaces 

(Figure 9-15 and Figure 9-16) were obtained using the quasi-stationary solutions generated by 

Eq. (9.9) with appropriate boundary conditions and the common free fall components, sections 

8.7 and 9.3. At the origin, the horizontal lines are the streamlines; the vertical lines move along 
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the transverse direction . Can you explain the origin of the various behaviors? We provide the 

model parameters below in the co-moving orthonormal basis (Cf. section 9.1): 

  (9.11) 

 

Figure 9-15: Streamline surfaces for 

. 

 

Figure 9-16: Streamline surfaces for 
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8. Verify that the oscillatory structure displayed (Figure 9-15 and Figure 9-16) has its origin in our 

imposed acceleration behavior of the initial conditions, seen in Figure 9-17 and Figure 9-18: 

 

Figure 9-17: Coordinate vectors as a 

function of proper time . The legend 

is that Blue, Red, Green and Purple 

correspond to  

respectively. 

 

Figure 9-18: Flow vector in the 

normal frame coordinate system as a 

function of proper time . The legend 

is that Blue, Red, Green and Purple 

correspond to 

 respectively. 

  

9. For the Attack-Defense model of section 9.1 and exercises 7 and 0, explain why the streamline 

surface changes shape when we go to , Figure 9-19. Compare the contour shapes of 

Figure 9-20 with the prisoner dilemma quantity in  dimension, Figure 5-48 and explain the 

origin of the similarities and differences. In both figures, which lines are constant  and which 

are constant ? 

 

 

Figure 9-19: Streamline surfaces 

. 

 

Figure 9-20: Proper time  plotted 

parametrically against  

and  showing constant 

 streamlines. 

 

10. In the previous Attack-Defense problems (exercise 7, 0 and 9), we have assumed that the primary 

oscillations were acceleration effects, not free fall behavior. Explain why the structures Figure 

9-21 and Figure 9-22 follow from the model based on streamline flow (Thomas G. H., 2006, p. 
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124). Note that the structures assume that the payoff and most but not all metric components are 

constant along the streamline as seen in Eq. (1.75), which can be re-expressed using Eq. (3.32) 

showing the possibility of helical behavior because of feedback loops both between the time 

components and space components as well as between the space components: 

   (9.12) 

 

 

Figure 9-21: Streamline flow (Thomas 

G. H., 2006, p. 124) for , 

, 

 and , which are 

blue, red, green, yellow and purple, 

respectively. 

 

Figure 9-22: Streamline plot 

corresponding to flows (Thomas G. 

H., 2006, p. 124) 

11. Given that a common attribute of streamline equations from decision process theory solutions in 

(Thomas G. H., 2006)  are helical in nature, we are motivated to assume that quasi-stationary 

solutions should also display helical structure without imposing the acceleration inputs. Using the 

previous Attack-Defense problems (exercise 7-9) as a starting point, we take out the acceleration 

effects (we reduce the weight 0.02 to zero) leaving only the free fall behavior (exercises 17-20 in 

section 8.12 and exercise 12 below), we obtain Figure 9-23. Note the helical solutions in Figure 

9-24. Given the free fall nature, why are there any oscillations? 

 

Figure 9-23: Free fall harmonic flows 

at  for the attack-defense model 

 

Figure 9-24: Attack-defense stream-

line flow contours for free fall 

behavior.  
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12. We use the eigenfrequency and eigenvalues of Eq. (8.80) for the attack defense model, along with 

an initial composite payoff vector along the  axis. Away from the still point, we expect 

acceleration forces to add non-trivial and additional path dependence along the streamlines, 

which can be resolved into harmonics. The simplest case is in which there are no acceleration 

forces  along an initial streamline and no additional harmonics. This generates harmonic 

solutions such as Figure 9-25. We obtain streamline contours such as Figure 9-26, which are 

computed using the full equations. Identify the streamlines in the figure and explain the 

differences between this solution and the solution shown in exercise 7. Note the change in time 

scales. Are all streamlines in free fall with no acceleration? 

 

Figure 9-25: Initial flow with  

for the attack defense model. The 

legend is Blue, Red, Green and 

Purple, for . 

 

Figure 9-26: Streamline contours for 

free fall  for the attack defense 

model. Strategic space components 

are ,  and . 

 

13. Based on section 8.12, exercise 20, we obtain other interesting contours, Figure 9-27 and Figure 

9-28. Discuss and explain the differences and similarities of these with the corresponding case 

where the acceleration behaviors dominate. 

 

Figure 9-27: Free fall behavior of 

proper time  

 

Figure 9-28: Streamline contours for 

free fall 
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14. Again using section 8.12, exercise 20, we obtain can investigate the behavior of the player 

charges as functions of time and , which we call player aggression. When it is positive, 

player 1 is more involved than player 2. When it is negative, the situation is reversed. For the 

“blue” defense player in the attack-defense scenario, we see that there are limits to the size of the 

aggression, Figure 9-29. We see a similar limitation for “red” attack in Figure 9-30. What are the 

sources of these limitations? The contours are for fixed values of . Does the situation 

change if we vary these values? The behavior for the code of conduct is quite different, Figure 

9-31. Explain the source(s) of the differences. 

 

Figure 9-29: Blue 

(defense) charge 

 

Figure 9-30: Red (attack) 

charge 

 

Figure 9-31: Code of 

Conduct charge 

15. We gain additional insight into the behavior of decision processes by studying the contours of 

constant pressure, analogous to the insight gained in weather forecasting, as well as studying 

contours of constant acceleration. Using section 8.12, exercise 20, we provide examples of these 

behaviors, Figure 9-32 and Figure 9-33, respectively. At each instant of time, describe the forces 

that these contours represent. 

 

Figure 9-32: Constant pressure 

contours 

 

Figure 9-33: Constant acceleration 

contours 

16. In the numerical work (e.g. Exercise 17), the assumption has been that we can set the active 

acceleration to zero at a point. Take this idea one step further. In a consistent way, set the active 

acceleration to zero on the initial surface (Cf. Exercise 14). Show that this implies that the 

acceleration and its gradient along the focused direction are determined on the surface: 
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17. In setting the active acceleration to zero on an initial surface, for numerical purposes you might 

think that Eq. (9.13) complicates the analysis using the harmonic power series approximation 

(Cf. Exercise 17). By investigating the numerical results in a variety of models for different mesh 

sizes, show that this is not the case. For example, we have computed the following table of results 

with an assumed set of initial conditions for the known conditions, using gauge invariance to set 

the initial value ( )0,0
z

a  (on the initial surface 0z = ) of the characteristic potential to zero. 

These parameters characterize the limit cycle surface in the three dimensional space of 

( ) ( ) ( ){ }, , ,
x z y z z
a x y a x y a x y∂ ∂ . The mesh is the order of the highest harmonic term. 

Mesh ( )0,0
x z
a∂   ( )0,0

y z
a∂   ( )0,0

z
a   

2 -0.00269302 0.01295000 2.28104×10
-5

 

3 -0.00329713 0.00792091 2.53266×10
-5

 

4 -0.000593376 0.00192842 8.78227×10
-6

 

5 -0.000600421 0.00193321 8.76807×10
-6

 

6 -0.000606108 0.00198585 5.79125×10
-6

 

7 -0.000597663 0.00198603 6.45998×10
-6

 

8 -0.000597316 0.00198954 5.31362×10
-6 

10 -0.000589397 0.00198488 5.91349×10
-6

 

 

18. For your numerical solutions in Exercise 17, investigate the stability of the topology of your 

solutions for different mesh sizes. Compare your results with our results shown below. 

 

Figure 9-34: Gauge Condition Surface 

4mesh =  for: x z y z za a a∂ ∂  

 

Figure 9-35: Gauge Condition Surface 

6mesh =  for: x z y z za a a∂ ∂  

19. The free fall harmonic solutions in section 8.12 exercise 20 and section 9.5, exercises 13-18 

display two interesting attributes: a linear solution and a helical solution that circulates around it. 

This is an inherent property of the free fall solution. Specifically it is a property of reflective of 

the value υυ ′Ω , Eq. (8.78). A general solution however, will start at an initial time from a known 

state over all spatial points. It can be represented as an infinite sum over harmonics. The time 

dependence of the general solution at 0x y z= = =  defines a solution that is no longer linear. 

Away from this “still point” will be fluctuations around this behavior. We may observe the 

inherent structure either from an exploration of different conditions at an initial time or from an 

exploration of different harmonic behaviors along 0z = . In this exercise we choose the latter. 

Consider the following curves with three harmonics, one of which is the free fall harmonic. The 
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behavior along 0z =  is now itself a helix, Figure 9-36, with additional rotational terms around it. 

The transverse directions are written as polar coordinates, { }cos , sinx r y rθ θ= = . The 

contours are for τ  (yellow) and θ  (purple). See if you can generate a model with similar 

behaviors. Note that the model predicts the behavior for 0z ≠ , which means that the behavior at 

the initial time is now predicted. 

 

Figure 9-36: Three harmonic 

behavior in Normal Coordinates 

{ }1 2 3u u u   

 

Figure 9-37: Frame Streamlines for 

three harmonic model 

20. In Figure 9-37, the vectors represent the frame components { },u u

z
E Eο  (red) and { },t t

z
E Eο  (blue). 

The axes are { },z τ . Explain why three regions are excluded: the determinant 0
m

n

u
E

υ
≤�  

(yellow), 0
tt

g ≤  (green) and 0mn

tt
g g g= ≤  (pink). Compare your arguments to those in 

Section 5.13, Exercise 17. Also see the Exercises 1-4 in the following chapter, section 10.7. 

 

  


